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1. Introduction

Definition 1.1 ([ABEF], [B1], [B2]): A finite dimensional, associative and com-
mutative complex algebra A with identity 1 is called a table algebra with
respect to a distinguished basis B (and B is its table basis) if and only if the
following hold:
I) 1eB.
II) The structure constants of A with respect to the basis B are non-negative
real numbers:

ab = Z AgbeC, for some Agpe € R>o.
ceB

III) There is an algebra (anti)automorphism (denoted by ~) of A such that
Gd=aforallac Aand B =B (an element b € B is called real if b = b).
IV) For all a,b € B, Agp1 = 0if a # b and Az > 0.

By [AB, Lemma 2.9], there is a unique algebra homomorphism | |: A - C
such that |b] = |b] € Rt for all b € B. The positive real numbers [b|, b € B are
called the degrees of (4,B). In what follows we also denote B¥ = B\ {1},
St =% cgsand |S| =3 slsl-

Table algebras are closely related to C-algebras introduced by Kawada [Kaw]
and Hoheisel [H]. The axioms of C-algebra may be obtained from I-IV if
we replace the condition Age € R>o by Agse € R and require the mapping
Y beB Tbb P D g TpA5, to be an algebra homomorphism.

Definition 1.2 ([B1]): An integral table algebra (abbreviated ITA) is a table
algebra (A4, B) such that all the structure constants Az and all the degrees |b|
are rational integers.

Any finite group G yields two examples of ITA’s: (Z(CG), Cla(G)), the center
of the group algebra, with table basis the set of sums C of G-conjugacy classes C,
with automorphism ~ extended linearly from inversion in G, and with degrees
IC| = |C] for all C € Cla(G); and (Ch(G),Irt(G)), the ring of complex valued
class functions on G, with table basis the set of irreducible characters of G, with
automorphism ~ extended linearly from complex conjugation of characters,
and with degrees |x| = x(1) for all x € Irr(G). Another example is the Bose-
Mesner algebra of a commutative association scheme, with table basis the set
of adjacency matrices, [BI, Section I1.2].
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Definition 1.3 ([BX1]): A table algebra (4,B) is called homogeneous (of
degree \) iff |B| > 1 and, for some fixed positive real number A,

o =X for all b € B¥;

a homogeneous integral table algebra is denoted by HITA.

Any table algebra may be rescaled (replacing each table basis element by
a positive scalar multiple) to one which is homogeneous, and any ITA can be
rescaled to a homogeneous ITA [BX1, Theorem 1].

Let (A,B) be a table algebra. For all z € A, Suppg(z) = Supp(x) denotes
the collection of all elements of B which appear with nonzero coefficient in the
decomposition of z. A nonempty subset C C B is called a table subset of B
(notation C < B) iff Supp(ab) C C for all a,b € C. Any table subset is stable
under ~ and contains 14, [AB, Proposition 2.7]; [BI, Proposition 2.13]. For
any ¢ € B, the set B, defined by

B. = Unzlsupp(cn)

is easily seen to be a table subset of B, called the table subset generated
by c.

An element ¢ of B is called faithful iff B, = B. Let G be any finite group.
Then € € Cla(@) is faithful iff (C) = G, and y € Irr(G) is faithful iff x is
faithful in the usual character-theoretic sense.

Definition 1.4 ([B5], [BX2]): An element b € B is called standard iff |b] = A
A table algebra (A, B) is standard if every element of B is standard.

bb1*

In what follows we use abbreviations S(I)TA and H(I)TA for standard (inte-
gral) and homogeneous (integral) table algebras, respectively.

Definition 1.5 ([BX2]): Two table algebras (4,B) and (4’,B’) are called
isomorphic (denoted B ~ B’) when there exists an algebra isomorphism
¥: A = A’ such that ¢(B) is a rescaling of B; and the algebras are called
exactly isomorphic (denoted B ~; B’) when ¥(B) = B'. So B ~, B’ means
that B and B’ yield the same structure constants.

Definition 1.6: Let (A,B) be a table algebra. Then ¢ € B is called linear iff
Supp(c™) = {1} for some n > 0. This is equivalent to Supp(cc) = {1}, [AB,
Proposition 4.2]. A table subset is called abelian iff each of its elements is
linear. The set of all linear elements of B, denoted by L(B), is a table subset
[AB, Proposition 4.2].



288 Z. ARAD, Y. EREZ AND M. MUZYCHUK Isr. J. Math.

Definition 1.7: Let (A,B), (C,D) be two table algebras. Then one can define
their tensor product (A ®¢ C,B ® D) where the distinguished basis B ® D is
the set of tensors b® d, b € B, d € D. If both (4,B) and (C,D) are standard,
then so is their tensor product.

If (C,D) is standard then (A®cC, B®D) contains a subalgebra (4, BQ{(C, D)
spanned, as a vector space, by the following basis:

B!D:={1®d:deD}U{b®D":bec B¥}.

A direct check shows that a subspace spanned by the above basis is a subalgebra
of (A®c C,B®D) that satisfies all the axioms. In what follows we shall denote
it by (A1C,B1D) and call it a wreath product of (C,D) by (4,B). The
dimension of (41 C, B D) is always equal to dim(A) + dim(C) — 1.

Example 1.8: In [BX1], Blau and Xu defined three families of homogeneous
table algebras of degree k, as follows:

1. To(k) := {1,b} with B2 =k -1+ (k — 1)b.

2. V(3,k) := {1,b,c} with

b =k-1+(k-1)c
bc=(k—1)b+ec,
AEA=k-1+b+ (k-2

3. V(2,k,p) := {1,b} with b = ku-1+ (k—p)b where 0 < p < k, p, k € N.
In what follows we set Vo := V(2,3,2), V3 :=V(3,3).

Definition 1.9 ([BX1]): Let (A,B) be a table algebra and b € B. The width
of b is defined as |Supp(bb)|. The width of (A, B) is defined as a maximal value
of |Supp(bb)|, b € B.

Integral table algebras of width 1 were classified in [AB] and they are abelian,
up to rescaling, the group algebras of abelian groups. The first step in the
study of table algebras of width two was done by Blau and Xu. To formulate
their result we need the following notation. Let (A, B) be a table algebra, H an
abelian group and A a positive real parameter. We set

BoH) ={b@h:beB\{1},he HIU{l® h: he H\{1}}U{l1®1}.

THEOREM 1.10 ([BX1, Theorem 3]): Let (A,B) be an integral table algebra
which is homogeneous of degree A for some A > 2, and is such that B con-
tains a standard, faithful element of width 2. Then B is exactly isomorphic to
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(To(A) ® Zy)' or (V(3,)) ® Zy,)" for some m € 77,
Z,, = {1}U{Mh:h e Z,\ {1}}.
In [BX2], Blau and Xu proved the following statement.

CoRrOLLARY 1.11 ([BX2, Corollary 2.15]): Assume that (A,B) is a homoge-
neous ITA of degree 3, and that B contains a faithful element b of width 2.
Then B ~, (V2 ® Z,,)', (V3 ® Z,)', or (To(3) ® Zy,), for some m > 1. So if
B is standard, then B ~, V3 or To(3). If b is real, then m < 2.

In [R] Rahnamai Barghi classified ITAs which contain a real standard faithful
element of width 2. In this paper we classify SITAs of width two generated by
one element.

If (A4,B) is a SITA and a € B is an arbitrary element of width 2, then
Supp(aa) = {1,b} for some b € B¥. Two cases are possible: |b| < |a| and
|b] > |a|. These cases are covered by the following two Theorems.

MAIN THEOREM 1.1: Let (4,B) be a SITA. Let a € B¥ be an element of
width 2 and degree k > 2. If |Supp(aa)| < |a| + 1, then one of the following
holds:
(D) k¥ = 2 and B, may be rescaled to a HITA of degree 2. (These algebras
were classified by Blau in [B2].)
(IT) k£ > 3 and one of the following holds:
(a) By =4 Zyn ® To(k),
(b) By ~4 Zp, ® V(3, k),
(c)a@a=k-1+k-bfor somebe B¥, |b| =k -1 and B ~; B(Z,d)
for some degree function d: Z, — N related to k (see Subsection 2.1
for the exact definition of algebras of type B(Z,,d)).

Remark: The conditions of the Theorem are always satisfied if an element of
maximal degree is of width two.

Finite groups related to SITA induced from conjugacy classes satisfying II of
our Main Theorem are classified in Proposition 3.7.

The next result resolves the case of |Supp(aa)| > |a| + 1.

MAIN THEOREM 1.2: Let (A, B) be a SITA of width two. If there exist a € B#
such that |a] = k > 3, and |Supp(a@)| > |a| + 1, then a@ = k - 1 + lz for some
leN andz € Bwithl | k(k—-1),l < k-1, and |z| = k(k-1)/l; and
B, ~; B(Zn, d) for some degree function d: Z,, — N related to |z| + 1.
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1.1. KNOWN FACTS AND SOME CONSEQUENCES.

Definition 1.12 ([AF5, Section 2], [B1, Definition 1.17]): The order of (4, B)
is defined as

o(B) := > |b*/Aypy-

beB

Note that in the case of either (Z(CG), Cla(G)) or (Ch(G),Irr(G)) for any
finite group G, the order of the table algebra equals |G|. If B is the set of adja-
cency matrices of a commutative association scheme, then o(B) is the cardinality
of the underlying set. For any B, o(B) clearly is invariant under rescaling. Since
b € B is linear iff A\,;; = |b|?, we immediately have

PROPOSITION 1.13: If B is abelian, then o(B) = |B|.

Given a table subset C of a table algebra (A,B), one can define a
quotient table algebra B/C in the following way. By [B3], Corollary 3.13
there exists a unique idempotent, denoted ec, which is a positive real scalar
times D, bl/ A5 0. So, eA is a subalgebra of A. It follows from [B3],
Theorems 1, 2 that the algebra Ae with a distinguished basis

{e} U {eb: b€ B\ C and |b] < |¥| for all ¥’ € Supp(ebd)}

is a table algebra. In what follows we denote by B/C a standard rescaling
of the basis defined above. By [B3], (Ae,B/C) is a table algebra which is an
epimorphic image of A. It is called the quotient algebra of (4, B) with quotient
subset C.

THEOREM 1.14 ([B3], Corollary 4.5): IfX is any table subset of B, then o(B) =
o(X) - o(B/X).

Definition 1.15 ([BX1]): Let (A4,B) be any table algebra with table subsets
C,D. Then

CD = J,,cc Supp(b:d))

b;ED
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is a table subset of B, the smallest one which contains C and D.

LEMMA 1.16 ([BX2]): Assume that (A,B) is a table algebra, and C,D are
table subsets of B with CD = B and CND = {1}. If |Supp(cd)| = 1 for all
c € C, d € D (which holds if either C or D is abelian), then B ~ C ® D.

Definition 1.17 ([BX2]): Fix b € B. The stabilizer of b in C, denoted stac b,
is defined as
stac b := {z € C|Supp(bz) = {b}}.

It is clear that stac b is always a table subset.

LEMMA 1.18 ([BX2]): Let (A,B) be a table algebra, L = L(B) and b € B.
Then Supp(bb) N L = stay, b.

Definition 1.19 ([AFM2]): Let (4,B) be a table algebra. If 2 = 7, g xsb,
Y = Y pcp Ubd, then the scalar product (z,y) defined by the formula (z,y) =
Y beB TbYpApp; 1S @ symmetric positive definite form on A.

PrOPOSITION 1.20 ([AFMZ2]): Let (A,B) be a standard table algebra. Then:
(i) for all a,b,c € A, {ab,c) = (b,ac) = {a, cb);
(i) for all a,b € B, |a| |b] = -, g Aabelz;
(iii) if B is integral, then for all a,b € B, Agpc|c| is divisible by the least common
multiple of |al, |b].

The next Lemma was proposed and proven by the referee.

LEMMA 1.21: If B, is a SITA and |a| = 2 then |b| < 2 for all b € B,.

Proof: Since (a?,a?) = {a@,a@) > 6, a® has a linear constituent u. Suppose
first that (a@,a@) = 6. Then (a,au) = {a?,u) > 0 implies that @ = @u. Assume
by induction on m that for all 2 < j < m, all elements of Supp(a’) have degree
at most 2. Let z € Supp(a™). Then |z| < 2, and (@z,a™!) = (x,a™) > 0, so
that @z has a constituent of degree at most 2. Hence, so does uaz = ax. Then
|az| < 4 implies that all constituents of axz have degree at most 2. Since z is
arbitrary in Supp(a™), the same holds for all constituents of aa™ = a™*!. The
result follows in this case. Now suppose that (a@,aa) > 6. Then aa = 2(1 + v)
for some linear element v. It follows that staa = {1, v}, and that B, /{1, v} is
abelian. Hence for all ¢ € B,, ¢€ = |c| - 1+ |c|(|¢| = 1)v. Then {cv,c) = (cc,v) =
|c}(lc| — 1) implies that the coefficient of ¢ in cv is |¢| — 1. But |cv| = |¢|, so that
] < 2. |
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2. The algebra B(G,d) and its characterizations

2.1. THE ALGEBRA B(G,d). Let G be a finite abelian group written mul-
tiplicatively with identity 1. Fix an arbitrary 2 < k¥ € R. A partial function
d: G — R is called a degree function related to k if it satisfies the following
conditions:
(D1) The domain of d is a subgroup of G denoted as G<¥;
(D2) d(1) =1;
(D3) d(g9) =d(g7') € [1,k—1) for each g € G<*.

The function d is called integral if Im(d) C Z.

We extend the domain of d to the whole group G by setting d(g) := k for
g € G\ G<*. We also set

It is easy to see that g € G<F < ¢(g) #0.
In the algebra C[G] @ C[G<*] we define the basis B(G, d) as follows:

B(Ga d) = {bg}yeG U {b;}gEG<’“’
where

by := (d(9)9,v/#(9)9), g€ G and b} :=(d"(9)g, —v/(9)g), g € G<F.

If p(g) # 0, then

b, + b d*(g)by — d(g)b;;
) 0= 0g) = TR,

note that (g,0) = (b, + b})/k even if o(g) = 0.

Since by, + b} = k(h, 0),
bg(bn + by) = d(g)(bgn + b1,
by (bn + by) = d"(g)(bgn + bgp)-
We note that b; is the identity of C[G] & C[G<*].

The algebra C[G] & C[G<*] has a natural involutionary automorphism & ~+ 7
induced by the mapping g — g~ ':

(2)

ik, A2g) = (WA dag™h).

Denote t(g, h) := \/%‘



Vol. 142, 2004 INTEGRAL TABLE ALGEBRAS 293

PROPOSITION 2.1: The algebra C[G] @ C[G<*] is a C-algebra with respect to
the distinguished basis B(G,d) = {bg}gec U {b; }4cq<+- Its structure constants
are given by the following formulae:

bgbh = Ag,hbgh + A; hb;h’

3 bybr = (d(h) = Ag,n)bgn + (d(h) — Ag p)bg,
bgbr, = (d(g) — Ag,n)bgn + (d(g) — A7 1 )bgh,
bgbh, = (k + Agn — d(h) = d(9))bgn + (K + Ag , — d(h) — d(g))by,
where
d(g)d(h)-kdk‘(gh)t(g,h), if p(h)p(g) # 0,
Ao = { dh)dlg) otherwise;
4) . ’

v oo { UDADAHE) - if (k) (g) #0,

d(h kd gl otherwise.

Proof: First we note that b; € B.
It is sufficient to prove the first formula from (3), since the others follow from

(2).
bebr = (d(g)g, V' (9)g9)(d(R)h, /o(R)h) = (d(g)d(R)gh, \/(g)p(h)gh).
If p(g)p(h) = 0, then it follows from (1) that

d(g)d(h)

babn = dlg)d()(gh,0) = =L

(bgn + bgn)

and we are done.
If o(g)p(h) # 0, then g,h € G<F which implies that gh € G<*. Therefore
@(gh) # 0 and it follows from (1) that

bybr, = (d(g)d(h)gh,/ ©(g)p(h)gh)
_ bgn + b3, d*(gh)bgn — d(gh)b},
= d(g)d(h)———"= + V¥(g)p(h) D)
— d(g)i(hy 2T g,y T~ O

_ dg)d(h) +d"(gh)t(g,h), ~ dlg)d(h) —d(gh)t(g,h) .
B k o k gh?

as desired.
If h =g~ then t(g,97") = ¢(g) and

d*(g) + (k — 1)p(g) by + d*(g) - o(g) .

bgbg—l = A k 1
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Since p(g)(k — 1) = d(g)d*(g),

&(g) +d(g)d(g),  di(g) — 494

bgbg—l = A by + A b;
Now using the identity d(g) + d*(g) = k we obtain that
d2 —d * *
bybo-r = dia)ts + ZD I gy, + (a(g) - et

Analogously,

by = (i + LD T (g1 + (0 (g) — ol

k-1
Thus A, 5, = d(g) and A5, = d*(g). A routine check shows that the
Ag] a°g
mapping b, — d(g),b; — d*(g) is an algebra homomorphism. |

PROPOSITION 2.2: Let (C[G] & C[G<*],B(G,d)) be a C-algebra defined above.
Then
(1) (CG] @ C[G<*],B(G,d)) is a table algebra if and only if

, d(h)d(g)d* (4)
(D4) )\g’h > mfa,x((), d(g) +d(h) — k) — E&Sﬁ’f({zﬂfgjﬁ > (kh)
)\g,h S mln(d(g)ad(h)) d(h)d(g!))d(j)J Z (kil)

holds for each triple g, h,j € G with ghj = 1;
(2) if d is integral, then (C[G] ® C[G<*],B(G,d)) is a SITA if and only if it
satisfies (D4) and the additional conditions:
(D5) t(g,h) € Z for each pair g,h € G;
(D6) d(g)d(h”f(gh)t(g’h) € Z for each pair g,h € G.

Proof: (1) A C-algebra is a table algebra iff its structure constants are non-
negative. Writing the corresponding inequalities for structure constants given
by (3)-(4) we obtain

W > wig.ms S > tg
d(g)d" (h) . d*(g)d*(h)
d*—(gh—)_ Zt(gah)’ _m_)——— Zt(gvh)

Taking into account that

_ [elg)p(h) _ [d(g)d*(g)d(h)d* (h)
“o,h) = \/ - \/(k ~D)d(gh)d (gh)
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we obtain that being a table algebra is equivalent to the following inequalities:
dd(hd*(oh) | 1 d'(@)dhdlgh) 1
d*(g)d*(h)d(gh) = k— 1’ d(g)d*(h)d*(gh) ~ k-1
d(g)d”()d(gh) _ 1 d'(g9)d"(R)d*(gh) & 1
d*(g)d(h)d*(gh) = k—1" d(g)d(R)d(gh) ~ k-1

Now the statement follows from the equality d(gh) = d((gh)™!).
(2) This part of the statement follows immediately if we impose the integrality

conditions on the structure constants. [ |

2.2. LINEAR EXTENSIONS OF TABLE SUBSETS. Let (4, B) be a standard table
algebra and let C be a table subset of B. A linear extension LE(B) of C is
defined as a set of all b € B such that Supp(bb) C C. An equivalent definition is
that LC(B)/C = L(B/C). If C = {1,b}, then we abbreviate L*(B) := L¢(B).

In this section we study linear extensions of the smallest non-trivial table
subset, namely a table subset of cardinality two. Assume that C = {1,b},
where b is not linear. If B is standard, then |b| > 1 and

b? = [b]- 1+ (|b] — 1)b.
We set k= |b| + 1.

LEMMA 2.3: Let (A,B) be a standard table algebra. Then the following
properties hold:

(1) L¥(B) is a table subset of B.

(2) |z{1,b}| = k for each x € B and L*(B)/{1,b} is an abelian group.

(3) |Supp(zy)| < 2 for all z,y € L*(B).

Proof: Part (1) follows directly from the definition of L?(B).

(2) Since 27 C {1,b}, |z{1,b}| = |[{1,b}| by Proposition 4.8 [AFM2]. The
second part of the claim follows from the definition of L®(B).

(3) Since L°(B)/{1,b} is an abelian group, the product of two {1,b}-cosets
is just one {1,b}-coset. Therefore, it is sufficient to show that each {1,b}-coset
contains at most two elements.

Since L°(B) /{1, b} is an abelian group, z; T; C {1,b} for each z;, z; € z{1,b}.
Therefore

and, consequently,

|| fz5] (il — 1)(es| — 1)
k-1

(T:Ti, T;T5) = |w4| |25] +
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On the other hand,

(2:Zj, 2T5) = —lx;cl2_|xi|2
So -
e o sl = D =) _ o Pl
Thus
(k= 1) + (|z:] - 1)(|jzs| = 1) = |z] |=;]
and

(k=1) = |zi| = |2;| + 1 =0;

therefore, |z;|+|x;| = k for each pair ¢ # j. Now the equality |1 |+ - -+|zn| = &k
yields our statement. |

In what follows we'll work with a table subset L®(B) only. For this reason we
set H := L*(B), 4 := Sp(H).
The main result of this subsection follows.

THEOREM 2.4: Let B be a table algebra basis, C = {1,b} a table subset with
b nonlinear, H := L°(B), and A := Sp(H). Then the standard rescaling of H is
exactly isomorphic to B(G,d) for a suitable finite abelian group G and degree
function d: G — R related to |b] + 1.

Without loss of generality we may assume that H is standard (otherwise we
can rescale it to standard) and |b| refers to the degree of the rescaled element.
Denote ey := +(1+b),e_ :=1— $(1+b). It is easy to check that e}, e_
are two pairwise orthogonal idempotents the sum of which is 1. Therefore
A = Ae, & Ae_. In what follows we set x4 := I%Ixe+,x_ = ge_ for each
z € H. Thus Hy := H/{1,b} = {z4: x € H}. We note that the algebra Ae,
with Hy as a distinguished basis is a SITA (in fact Hy is an abelian group).
Define a function *: H — HU {0} by the following rule:

Tt = Y, if l‘{l,b} = {x,y};
) 0, otherwise.

Since each {1, b}-coset consists of at most two elements, z* is well-defined for
each z € H. For each z € H we set ¢(z) := |z|(k — |z])/(k — 1). Since each
{1, b}-coset contains at most two elements, the value of ¢(z) depends only on
the {1,b}-coset of z.
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PROPOSITION 2.5: The following properties hold:

(i) re_ = ]x'lz;|z|x';
(il) - =T—;
(iii)
(5) (z-)(®-) = p(z)e-;

(iv) if H is integral, then o(z) = ¢(T) € Z;
(v) if z,y,2 € H are such that Ay, # 0, then xy = Az + \*2* and

oy- = (A= Xz
p(@)py) = (A = A)p(2);

(vi) IfH is integral and x € H is such that gcd(|z|, |x*|) = 1, then zz* = ¢(z)z
where |z| = k — 1.

(6)

Proof: (i) Since
-1
7 o1+ 0= D),
lb]
hence xb = (|z] — 1)z + |z|z*, so that

_ * * _ *
B e o e 1

k k

(i1) follows immediately from the definition of z_ and z*.

(i)

LIGER

z_TZ = (ze_)(Te-) = (aT)e- = (|a:| -1+ 1

Since 1 + b = ke; and eye_ = 0, we can rewrite the latter equality as follows:
. z{(|z] = 1)
T_T_ = (|x| 14 I-I(]l—_ll——(ke+ - 1))6_

= (|x| - ——————le(]lx_lz 1))6_ = p(x)e_.

(iv) The equality ¢(z) = (%) follows immediately from part (iii). The inclu-
sion ¢(z) € Z follows from the identity
90('73) = |$L'| — Aszb-

(v) Since H/{1,b} is abelian, Supp(zy) C 2{1,b}. If 2* = 0, then 2{1,b} =
{z}, and therefore zy = A;y.2. If |Supp(2{1,b})| = 2, then z{1,b} = {z,2*}
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and zy = Az + A*2* with A = Mgy, A" = Agye+. In both cases we can write
Y = Az + A*2*, where A* is an arbitrary integer if 2* = 0.

Multiplying the latter equality by e_ and taking into account that €2 = e_
and (z + 2*)e_ = 0, we obtain

(ze_)(ye—) = Mze_)+ X 2% (e_) = AMze_ )+ A" (z+ 2" —2)(e=) = (A=A")(ze-).

Applying — to both sides we obtain

(Te-)(yeo) = (A - A")(ze0).

Now multiplication of both equalities and (5) yields (6).

(vi) If z is real, then zz* = zz* = @(z)b and we are done. So, we may
assume that x is nonreal. It follows from part (iii) of Proposition 1.20 that
[Supp{zz*)| = 1, i.e, zz* = Az for some z € H. Therefore {zz*,zz*) = Nz||z*|.
On the other hand,

(vz*,z2*) = (2T, 2*0*) = (xz*, 2T%).

Since zz* = ¢(z)b, (zz*,z7*) = @(x)|z||z*|, and, consequently, A = ¢(z),
|z =k —1. 1

In the statement below 7(n) denotes the set of prime divisors of a nonzero
integer n. The set of all primes is denoted as P.

LEMMA 2.6:

(i) A subset X is a table subset of H if and only if either X < L(B)
or {1,b} C X and there exists a subgroup A < H, such that X =
{zxeH|zy € A};

(ii) if H is integral, then for each I1 C P the subset H! := {z | n(¢(z)) C II}
is a table subset of H;

(i) H i= {z | ol < ¥} = {z | |o{1,b}| = 2} < H;
(iv) if H is integral and z,y = zy with o(z) = ¢(y), then ¢(z) is a perfect
square;

(v) if H is integral, then ¢(z) is a perfect square for each z, € (Hy)? (here
A? is a subgroup of A generated by the squares).

Proof: (i) Since X < H, X, < H.. If {1,b} < X, then X is a full preimage
of X and we are done. If {1,b} £ X, then XN {1,b} = {1} and, consequently,
Supp(zZ) C XN {1,b} = {1} for each z € X. Hence X < L(B).
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(ii) Let z,y € H be such that n(¢(z)), 7(p(y)) CII. Then p(z) # 0,¢(y) # 0.
Write 2y = Az + A*z*. Now the claim follows from (6).

(iii) follows from (6).

(iv) is a direct consequence from (6).

(v) is a direct consequence from (iv). ]

It follows from part (iii) that H" is a subgroup of Hy. A function p: HY* —
H<* will be called a representative function if p(z); = z for each z €
Hik equivalently, p(z) € Supp(z),z € Hf". We always have that Supp(x) =
Supp(p(){1,b}) = {p(z), p(z)" }.

Denote

PROPOSITION 2.7: For each z,...,2, € HEF

pa1) -+ plam) = Ap(ar - m) + N plar -+ ),
plz1) - plam)e- = (A= N)plar -+ -om)e-

and
pn(a:l) o pp(Tm) = pn(xl e Tm)
iffA—=x>0.

Proof: Since p(z) € Supp(z) for each z € H¥, we can write

Supp(p(z1) - - - p(xm)) C Supp(zy - - - &m) = Supp(p(z1 - - Tm ){1,b}).

Thus p(x1) - p(xm) = Ap(x1 - Tm) + A*p(x1 - - - xp)* for suitable A\, A\* € N.
Multiplying both parts by e_ we obtain that

pa1) - plm)e- = (A= A)p(z1 - Tm)e—.

Induction on m and (6) imply that

pn(T1)  pu(Tm) = £pn(@1 -+ Tm)

for each m € N. On the other hand,

o E) = O N o(p(e1 - - Tm)) S
Pn(T1) - pn(Tm) = (A=A )\/@(p(l'1))"'§0(p($m))pn( 17 Tm)-

Now the claim becomes evident. ]
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PROPOSITION 2.8: There exists a representative function p: Hik — H<* such
that pp(hy) = h_ for each h € L(H) and

(7) Pr(Z)pn(y) = pnlzy)
for each z,y € H{ .
Proof: 1t follows from Proposition 2.7 that

p(x)p(y) = Ap(zy) + A" p(zy)”

for some A, A* € N. It follows from Proposition 2.5 and (6) that

p(e)-ply)- = (A = A")p(xy) -

where
N = 4, [ 2@)e)
p(zy)
Then
(8) pr(@)only) = 6(z,y)pn(zy)

where 6(z,y) € {£1}. We have to show that the function p may be built in such
a way that 8(z,y) = 1 for each z,y € Hi* and p,(hy) = h for every h € L(H).

Since L(H),+ is a subgroup of HS*, there exists a decomposition HE¥ =
X1 x --- x X, into the product of cyclic subgroups such that

LH)+ = (LH)4+ N X1) x - x (LH)4 N X,).

Let z; and y; be generators of X; and L(H) N X;, respectively. Denote by n;
the order of z; in the factor-group X;/(L(H); N X;). It follows from (8) that
pn(x:)™ = £pn(z]*) = £gse_, where g; is a unique linear element of Supp(z}*).
It is clear that z7* = y; = (¢:)+-
Define now
N (@) i pn(@)™ = +gie,
U(-'Ez) . {p(xz)* lf Pn(l'i)m — _gie—-
If n; is even, then

(p(x7/%))? = Ags + A" g7
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Since g; is linear, A = lp(x )| > A
Define p(hy) = h for all h € L(H). Then p,(hy) = he_, and hence
(p(@}**)? = pa(a}*) = gie-.
Now the equality
pula)™/* = £pu(a*/?)

implies that

(@)™ = (pr (@)™ /?)? = (£pa(a]/*)) e = gie_.

Thus if pp(z;)™ = —gie—, then n; is odd. Therefore o, (x;) = —pp(z;), and,
consequently, o, (z;)™ = ge_.

Thus o,(z;)™ = ge— for each ¢ = 1,...,r. Denote N; := o(x;). Clearly
N; = n;o{g;). It follows from Proposition 2 7 that for each n € [0, N; — 1] w
have o(z;)™ = Ah + X\*h* for suitable h € H. Set

o (R A <A
©) olay) = {h* otherwise.

By Proposition 2.7, o, (z}) := (on(x;))™ for each n € [0, N; — 1]. Since acfv =1
and (0, (2:))™ = (:)°9)e_ = e_, the equality o, (2?) := (a,(x;))" holds for
each integer n.

If A € L(H) is such that hy € L(H); N X;, then h = g7 for some m and

on(hy) = onl(gi")+) = on(((9)+)™)
=on(@™) = on(@)™™ = (gie-)™ = he_.

Therefore o(hy) = h.
If (z1)™ ... (z,)™ € ij is an abritrary element, then

o) -...-o{al) = Xh+ A*h*
for a suitable h € H*. As before, we set

m ! h A<
1 1 e My = — )
(10) a(af ") {h* otherwise.

1 Here we used the fact that if u € B is linear and Aywu # 0, then |v} = |w] = Avwe.
We didn’t find the proof of this claim in the literature, so we reproduce here the
proof proposed by the referee.

By Proposition 1.20, Avwufu] = Aumly] < )\ku = Aguejv| By [AB,
Proposition 3.2] |Supp(vw)| = 1. Therefore @ = Aymyv. It follows from
Auzolv] = ] = o] = (W, uB) = (uw, ww) = Aig,|v| that Aymy = 1. There-
fore Apwu = v}
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Thus
on(z™) - op(a]r) = o - 2.
Now we can write
on(zy" 2ozl - al) = on(a]t) - on(@)on () - on(ad)
=op(x)P - op(@n)Pron (@) - L. on() T
— O-n(xl)Pl“'QI . 'Un(fr)p"+q’
= oy, (Ipl+q1) ol 'Un(x£”+q")
=0, (xp1+q1 . _I£,~+q1-)'
Consider an arbitrary element h € L(H). Then h = y}* - ... yPr for some
p;’s. Then
onlhi) = on((g) - (gr)F) = 0ul(9)}) - .. on((r)§)
=(g1)Pe-...-(gr)Pre_ =yt - ... -yPre_ = he_.

Therefore o(hy) = h. |

PROPOSITION 2.9: Let p: Hik — H<* be a representative function which
satisfies (7). Then H ~; B(H,,d), where d is a degree function related to k
defined as follows:

for all h € H<¥,

_ Jlp(hy)l it h = p(h4),

(i LORE fr Nl
Proof: First we check that d satisfies the conditions (D1)-(D3).

If z € H{¥, then |p(z)| < k follows from the definition of H<*. If |p(z)| =
k — 1, then |p(z)*| = 1 and, by Proposition 2.8, p(p(z)}) = p(z)*, con-
trary to p(p(z)y) = p(p(z)4+) = p(z). Therefore |p(x)| € [1,k —1). Since
lo(1)] € {1,k — 1}, |p(1)] = 1 implies that p(1) = 1. By Proposition 2.8,
pr(@)pn(e™") = pu(1) = e~. Therefore p(z') € {p(2),p(z)"}. If p(z™?) =
p(x)*, then pp(z)pn(z7!) = —e_, which is impossible. Thus p(z~!) = p(z)
and, therefore, |p(z)| = |p(z~!)|. Thus (D1)-(D3) are satisfied.

Define a linear mapping

f:CH,]®CH* - 4
via its action on the basis {(h,0)}ren, U {(0, h)}heHikI

f((h,0)) = h, f((0,h)) = pn(h).
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Since Ay = Ae; is a table algebra with a distinguished basis H,, f is an
isomorphism between (C[H.],0) and Ay.

Since p,, satisfies (7), pn is a group homomorphism from Hfrk into A_. Its
kernel is trivial, since the elements p,(h),h € Hik are linearly independent.
Thus {pn(h)} heHT is a group isomorphic to Hfrk . Thus f is an isomorphism

between (0, C[HS*]) and A_. Combined altogether we obtain that f is an
algebra isomorphism between C[H,] ® C[HS*] and A. To finish the proof we
need to check that it maps the distinguished basis of C[H] & C[H$¥] onto H.
If o(h) =0, then

f(by) = f(d(h)h,0) = d(h)h = kh € H.
If (h) # 0, then

f(br) = f(d(R)h, \/p(R)h) = d(R)h + v/ @(h)pn(h) = d(R)h + p(R)—.

Since h = p(h)4 and d(h) = |p(h)],

for) = lp(A)lo(h)+ + p(h)— = p(h).
Analogously,
FbR) = F(d* (h)h, —/o(h)h) = d*(h)h — v/ o(h)pn(h)
=d*"(hh — p(h)- = |p(h)*|p(h)+ — p(R)- = p(R)". &
As a corollary we obtain the following statement:

PRrROPOSITION 2.10: Let a € B be an element of width 2 such that aa = k-1+kb,
la| = k,|b| = k — 1. Then B, ~; B(Z,,,d) for some m € N and degree function
d:Z,— R

Proof: {a,ab) = (a@,b) = k(k — 1) implies that ab = (k — 1)a, and hence
b € staa. Thus, staa = {1, b}, so this is table subset. Now Theorem 2.4
applies. |

3. Enumeration of degree functions related to a given &

In general it is difficult to describe all degree functions related to k¥ € N. The
first natural question which naturally arises is: what can be said about the
cardinality of Im(d)? The following statement is easy to check.
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PROPOSITION 3.1: Let G be an abelian group and d be a degree function such
that Im(d) = {1}. Then d satisfies the conditions (D1)-(D6).

Since d(g) is an idempotent in Z;_; we get the following
PROPOSITION 3.2: |Im(d)| < 27—l

Let z € Hy be an arbitrary element. Set

a:=d(z), b:=d(z?), a* :=d*(z), b* :=d*(2%), A= Ay, A" = N

z,r"*
Then
(12) a? = Ab+ \*b*;  aa* = ab+ a’b*,

where a :=a — A\, a* :=a — X*. Since A > A" a < a*.
Then the conditions (D1)-(D6) imply the following equations, which will be
referred to as E-equations:

(a) at+a*=b+b*=
(b) a> A
(c) max(0,2a — k) < ¥,
(13) (d) ¢fa):=aa*/(k-1) €N,
(© o) =/ €N
(f) t:=p(a)//¢(b) € N,
(8) A= (a + b*t) k eN
() ged(a,a®) # 1.

A solution with @ = 1 or b = 1 is called trivial. By part (vi) of Proposition 2.5
nontriviality of a solution implies that ged(a,a*) # 1, which explains part (h)
of (13).

If a = b is a solution of E-equations, then we have the following

THEOREM 3.3: Let FF < H < G be abelian groups. Let a = b € N be a
non-trivial solution of (13). Then the function d: H — N defined by

_Ja, fheH\F
d(h)_{l, ifhe F

is a degree function related to k which satisfies the conditions (D1)-(D6).

Proof: The conditions (D1)—(D3) follow immediately.

To check (D4) pick an arbitrary triple 4, 7, k € G which satisfies ¢jk = 1. Then
(d(?),d(5),d(k)) is one of the following triples: (1,1,1),(a,a,1), (a,a,a). In the
first two cases (D4) is evident. In the remaining case (D4) follows from (13)(b).
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(D5) Computing t(g, h) we obtain

1, g,h € F,
1, ge F,he H\F;
t(g,h) =4 k=) g he H\F,gheF;
dbe) g he H\F,ghe H\F.

It follows from (13)(f),(d) that t(g,h) € N for each g,h € H. Thus (D5) is
satisfied.
(D6) The number dg)d(h)+d" (sh)(9.h) ig 1 if one of g, h does not belong to F.

If g,h € F, then Md(h%‘(ghﬁt(g’h) € N by Part (g) of (13).

Not every solution of E-equations has a property a = b. The statement below
yields an infinite series of solutions with a # b.

THEOREM 3.4: Let 1 < Hy < Hy < Hs < G be abelian groups. For each
m € N set
g:=4m? -2, s:= (¢ -U)m, k:=4s®= (¢ —1)%4m?,
a:=(F-1)(@F+qg-1), b:=s(2s+0),

where 6 is —1 if s is odd and 1 otherwise. Then d: G — N defined below is a
degree function related to k.

1, gGHl,
d(g) =< a, g€ H2\ H,
b, g€H3\H2.

Proof: The conditions (D1)~(D3) are evident. The conditions (D4)-(D6) are

equivalent to the fact that A\, ., A7 ,,z,y € G are non-negative integers which
satisfy
(14) Aoy S d(@),d(y); Az, 20, dx) +d(y) — k.

Direct calculations show that A, ,, A*

z,y» Ay, have the values given in Table 1 (recall
that A7 , = Ay — t(z,9))-
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Table 1
d(z) | d(y) | d(zy) | t(z,y) Azy
1 1 1 1 1
a a 1 g -1 a
b b 1 s b
a 1 a 1
b 1 b 1 1
a a a @ -1 e +¢ -2q
b | b b s 2 + s+ S0
b a b -1 [(g=D(g+1)*@2m*+1) -
b b a |(¢-1)m? s? + 0 + q(qg — 1)m?
Now one can check that Ay, A}, satisfy (14). ]

In the next subsection we will find all solutions of (13) with a = b.

3.1. SOLUTIONS OF THE E-EQUATIONS. Set
l:=ged(a,k—1), I":=ged(a™,k-1), m:=

Clearly, a = ml,a* = m*I*.

ProPOSITION 3.5: The following properties hold:
(1) ged(m,l*) = ged(m*, 1) = ged(1*,1) =1;
(2) II* =k — 1 and, therefore, ml + m** =1I* + 1;
(3) d:=ged(m, k) = ged(m*, k) = ged(m, m*).

Proof: (1)

k=ml+m*l*=ml = 1(mod *) = gcd(m,l*) = 1,ged({,1*) =
k=ml+m**=m*l* = l(mod ) = ged(m*,l) =1,gcd(l,1*) =

(2) Since ! and I* are coprime divisors of k — 1, I* | (k — 1)/l. Since a® —a is
divisible by k — 1 (see (d) of (13)), mi(ml —1) = 0(mod k — l)ﬁm(ml -1 =
0(mod ’”—7—1) Now the equality ged(a, k — 1) = | implies that ged(m, & ) 1.
Therefore

)=>a* EO(modk; 1)
k-1

I* — "

(ml—1) (
k
T 1
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(3) It follows from (1) that gcd(a,a*) = ged(m, m*).

It follows from ! | (k — 1) that ged(a, k) = ged(ml, k) = ged(m, k). Anal-
ogously, ged(a*, k) = ged(m*1*, k) = ged(m*, k). Now the claim follows from
ged(a, k) = ged(a*, k) = ged(a, a™). |

It follows from part (f) of the E-equations that (@ — a*)? = t? = y(a).
Therefore

A=-N)P=(a-0")? =pla) = kai - =mm'.

Thus mm* is a perfect square. Since m/d and m*/d are coprime, m/d =

u?,m*/d = (u*)? for some coprime numbers u,u*. Thus we obtain that

k
8 = l*u*2 + lu?

and all the numbers [, [*, u, u*, k/d are pairwise coprime.
It follows from aa* = aa+a*a* (see (12)) that o* /d divides @ and a/d divides
a*. Write o = p(a*/d) = pl*(u*)?,a* = u*(a/d) = p*lu?. By the E-equations

a—a =—t= pl*w*)? - plu® = —duu

and
ptpt =d.

w(u*)? — p*u? = duu*. Thus p = vu, p* = v*u* and, therefore,

{ vu+ viut =d;
vi*u* — vilu = —d.
Finally we obtain that
lu —u* o +u

*

YR U T e v ()
which implies that

W?+1"w)?  u'+u  lu—ut
d v v

Set
lu? + 1* (u*)?
W= ——
d
(w may be not an integer). This gives us the following:
vw +u” v'w —u

l= s =
u u*
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Taking into account that II* + 1 = k = d(u?l + (u*)?l*) = d*w we obtain

dPuu* — v u* + vu
w= - ,
vy

where d = vu + v*u*. Therefore
_lut v l*_dQu—u*
R v

l

THEOREM 3.6: If u,u*,v,v* € N are such that ged(u,u*) =1 and

(15) {u2u2u* = —v(mod v*),

v*)2u(u*)? = v*(modv),
then the following numbers yield a solution of the E-equations:
a=b=du?l, a" =b"=dw")*, a=vl*u@w*)? o =vutu’

20, 2, _ %
where d = uv + u*v* and | = LU AL, |* = du—vt

Proof: First we note that [,I* € N by (15).
Further

k=a+a* =du?l + (u*)l*)
du* +v

_ 2 *

= d(u — + (u*)

uu*v + (vu)? + u(u*)v* — (v*u*)?

Pu—v*
2uyu)

=d

vv*
_ dd2uu*(uu +u*v*) + (v*u* + vu)(—vrut + vu)
- vv*
3 * o0k
:dd wu* + d(v*u* — vu) T

vv*

(b) is equivalent to o > 0, which holds trivially.
(c) is equivalent to o* < min(a,a*). The inequality o* < a is evident. So we
need to check only that a* < a*. Now we can write

* * *7, %, 2 *\27% 2, % 2 *d2u—z/*
a* <a" = vivu <du)l = (du +r)u <dut——
= (Puu* +vu)vu < Bun* —dv'u* <= (vu)? + dv*ut < dPuutvtut.
Now the claim follows from

(vu)? 4+ dv*u* = (vu)? + (vu + v*u*)r*u® < (vu + v*u*)? = & < dPuuviu®.
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(d)+(e)+(f) We have
ola) = p(b) = (duu*)? = t = duu*.
(g) It is enough to show that a — A € Z,

a®+a't _ a*'(a—1t)

a-A=a- . -
d(u*)?1* (du?l — duu*)  w(u*)?l*(ul — u*)
- k B k/d2 '
Since
2uu* — u*v* * kg k
ul—u*:duu tu —wt g k/d2:d2uu + uv — u*v

v* vv*

we obtain a — A = vu(u*)?l* € Z.

(h) Since v, v*, u, u* are natural numbers, d > 2, which implies that ged(a, a*)
> 9.

It is not difficult to describe all solutions of (15). Set n := ged(v,v*), v =
nd, v* = nd*. Then gcd(6,6*) = 1 and (15) are equivalent to the following
congruences:

(16) { nfuu* = —1(mod 8*);
nd*u(u*)? = 1(mod ).

Thus we have a quadruple of pairwise coprime numbers u,u*,8,0*. By the
Chinese remainder theorem the congruences (16) always have an infinite series
of solutions for each quadruple u,u*,8,8* of pairwise coprime natural numbers.

Some infinite series of solutions of (15) may be easily pointed out:

60 =1,0* =1 and n,u,u* € N are arbitrary numbers with ged(u,u*) = 1;

u=u"=1ln=1,0=60+1,0¢cN

Table 2 contains the list of solutions to the E-equations for @ = b,a* = b* as
solved by Shlomo Arad’s computer program for values of 1 < k < 2000. One
can see that for each k¥ < 2000 there exist at most one solution. Some of the
solutions found belong to the infinite series defined above.
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Table 2
uw | u 916 n]a a* Ja [ k
1 1 1 1 1 3 5 10 6 16
1 1 1 2 1 7 10 15 21 36
1 1 2 1 1 8 11 33 12 45
1 1 1 1 2 14 18 36 28 64
1 1 3 1 1 15 19 76 20 96
1 1 2 3 1 22 27 45 55 100
1 1 1 1 3 33 39 78 66 144
1 2 1 1 1 32 38 57 96 153
2 1 1 1 1 34 40 120 51 171
1 1 4 1 1 24 29 145 30 175
1 1 3 4 1 45 52 91 105 196
1 1 1 1 4 60 68 136 120 256
1 1 5 1 1 35 41 246 42 288
1 1 1 3 2 58 66 88 232 320
1 1 4 5 1 76 85 153 171 324
1 1 1 2 3 75 84 126 225 351
1 1 2 1 3 78 87 261 117 378
1 1 1 1 3 95 105 | 210 190 400
1 2 1 1 1 96 106 | 265 160 425
1 1 6 1 1 48 55 385 56 441
1 1 5 6 1 115 | 126 | 231 253 484
1 1 1 1 6 138 | 150 | 300 276 576
1 2 1 1 2 136 | 148 | 222 408 630
1 1 7 1 1 63 71 568 T2 640
2 1 1 1 2 140 | 152 | 456 210 666
1 1 6 7 1 162 | 175 | 325 351 676
1 3 1 1 3 135 | 147 | 540 196 736
1 1 1 1 7 189 | 203 | 406 378 784
3 1 1 1 1 141 153 | 612 188 800
1 1 8 1 1 80 89 801 90 891
1 1 7 8 1 217 | 232 | 435 465 900
1 3 2 1 1 216 | 231 | 385 540 925
2 1 1 5 1 186 ) 200 } 280 651 931
3 1 1 2 1 219 | 234 | 585 365 950
1 1 1 2 5 215 | 230 | 345 645 990
1 1 1 1 8 248 | 264 | 528 496 1024
1 1 2 1 K 220 | 235 | 705 330 1035
1 1 8 9 1 280 | 297 | 561 595 1156
1 1 9 1 1 99 109 | 1090 | 110 1200
1 1 1 1 9 315 | 333 | 666 630 1296
1 1 1 4 3 213 | 228 | 285 1065 | 1350
1 1 3 1 4 252 | 268 | 1072 | 336 1408
1 2 1 1 3 312 | 330 | 495 936 1431
1 1 9 10 1 351 | 370 | 703 741 1444
2 1 1 1 3 318 | 336 | 1008 | 477 1485
1 2 1 3 1 184 | 198 | 231 1288 | 1519
1 1 10 1 1 120 | 131 | 1441 | 132 1573
1 1 1 1 10 | 390 | 410 ] 820 780 1600
2 1 1 3 2 388 | 408 | 680 970 1650
1 1 10 | 11 1 430 | 451 | 861 903 1764
1 3 4 1 1 432 | 453 | 1057 | 756 1813
1 1 1 11 | 473 | 495 | 990 946 1936
1 1 1 7 427 | 448 | 672 1281 | 1953

Isr. J. Math.
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PROOF OF THE MAIN THEOREMS.

3.2. PROOF OF THEOREM 1.1. Recall that a € B¥ is an element of width 2
and |a| = k.

(I) If ¥ = 2, then B contains elements of degrees 1, 2 and B can be rescaled
to a HITA of degree 2, and by Lemma 1.21 Case 1 holds.

(I) f &k > 3, let a@ = k- 1 + Ab, b € B#; then \|b| = k% — k, (a@,d) = Ajp| =
k(k — 1), {@,ab) = Agpa - k- So ab = (k~1)a+ 3, Aabex. Since |b| < k, we
have Zg#a Aabz|Z] < k. On the other hand, & | Aabz ||

Now for all z € Supp(ab) \ {a}, we have one of the following cases:

CASE 11 Agpelz| =k, b=k, A=k —1.
CASE 2 Aupelz| =0, ]| =k -1, A=k
Case 1: Let b2 =k-1+ Bb+u and ab = (k — 1)a + az where 8 € NU {0},
a €N u€ A Thus o|z| = |a| [b] — (k — 1)|a| = k. Now {(a@, b?) = k* + SA|b| =
k? + Bk(k — 1) and {(ab, ab) = (k — 1)?|a| + o?|z| = (k — 1)%k + ak. Therefore
k+pB(k-1)=(k-1)?+0. Then 1 < o < k implies that k —2< B <k -1,
hence 5 € N.
SUBCASE (a): B8 =k —1. Thus @ = k and we have that > =k -1+ (k — 1)b.
Thus zb = a and z € B is linear. Since B, - B, = B, and B, N By, = {1}, we
have (Lemma 1.16) that B, ~, (Z,, ® Tq(k))’ for some m € N, where

To(k) = {1,b}, b =k -1+ (k - 1)b,
and case II(a) holds.

SuBcASE (b): 8=k-2,a=1,|z| =k, and we have b = k- 1+ (k — 2)b+u,
u€A |ju=kab=(k-1)a+z.

[u] = |b] and |3| | vle| for any ¢ € B that appears in u with coefficient v. Then
u = vyc for some ¢ € B#¥, v € N and v = . Now

(@@)b=kb+ (k—1)b* =kb+ (k— D[k + (k —2)b+u], (ab)@ = (k — 1)aa + az,

but Azzc < |a| = k by [AFM2, Proposition 2.3]. Thus @z = b + (k — 1)u and
u € B#.
(@r)b = x(ab) = z((k — 1)a+z) = (k — )b+ (k — 1)%u + 27,
(@)b=(b+k-Duwb=b2+(k-Dbu=k-1+(k—2)b+u+ (k—1)bu.

Therefore bu = b+ (k — Du, u? =wu =k-1+ (k- 1)b, au = (k — 1)x + 6z for
some § € N and z € B¥ where 6|z| = k.
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Now (uT, a@) = {au, au) holds.
(ui,ad@) = k* + (k- 1)%k, {au,au) = (k — 1)%k + 6%|2|.

Thus k% = §2|z| = 6k; then 6 = k and |2| = 1, so 2T = a. Thus B, - B, = B,,
B,NB, = {1}, therefore B, ~ Z,,®V (3, k) for some m € N, V(3,k) = {1,b,u},

¥ =k -1+ (k-2b+u,
W=k -1+ (k- 1)b,
bu=b+ (k- 1)u,

and case II(b) holds.

Case2: |b| = k-1,ba = (k—1)a. Thus aa = k-14+kb. Now (ba)a = (k—1)aa =
(k= 1)k -1+ k-b], b(a@) = kb+ kb%, and we have b> = (k— 1) -1+ (k — 2)b.
Now Proposition 2.10 finishes the proof. |

PROPOSITION 3.7: Let G be a non-cyclic finite group which contains a conju-
gacy class C such that

1) (C)=G;

(2) cC~! ={1}uD, D € Cla(G) and |D| < |C].

Then G = Zy : {c) where the action of ¢ on Zj, is defined by a Singer matrix.
In particular, G/Z(G) ~ AGL,(p").

Proof: The table algebra of conjugacy classes of G satisfies the conditions
of Main Theorem 1.1 with |C| = k > 3. (If |C| = 2, then for any g € C,
|G : Ca(g)| = 2 implies that C C Ce(g) < G. This contradicts (C) = G.)
Let N = (D). If lI(a) or (b) of Main Theorem 1.1 holds, then |D| = |C|, G =
Z(G)N, and [N| =k +1 (if B, ~; To(k)) or |[N| =2k + 1 (if By =, V(3,k)).
For any h € D, |G : Cg(h)| = k. Thus |G : NCg(h)| = k/|IN : NN Cg(h)|,
where the denominator and numerator are relatively prime. Hence N < Cg(h),
so that N is abelian. Then G is abelian, which contradicts |C| > 1. So II(c)
holds, |D| = |C] =1, and N = 1U D. Since G is transitive on N#, N is
elementary abelian of order p™ for some p and exponent n.

In this case C = ¢N for each ¢ € C. Now (1) implies that G = (¢, N) = N-(c).

Since D is a conjugacy class of G and N < Cg(D), D = d') for each d € D.
Thus (c) acts transitively on the set D of cardinality p” — 1. Hence the kernel of
this action is a subgroup of {c) of index p" — 1, or, equivalently, (c?" ~!) < Z(G).

On the other hand, if z € Z(G) is an arbitrary element, then z = ¢*-n for some
i€Zandn €N. Since [Z(G),N]=1,[¢!,N]=1=p*—1|i= Z = (¢* ~')!-n.
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But ¢*" ! € Z(G), hencen € Z(G). Now NNZ(G) = 1 implies that z € (c?"~1).
Thus Z(G) = {(c?"~1). Since NN {c) < Z(G), Nn{c) = {1}.

Take an arbitrary a € C. Let A be the matrix corresponding to the action
of aon N ~ Zj. Since (a) acts on N \ {1} transitively, (4) acts on Z7 \ {0}
transitively = (A) is a Singer subgroup of GL,(p). The isomorphism G ~
Z3 : {c) follows from G = N - {(c) and N N{c) = {1}. It follows from G/Z(G) =~
Z3 : (A) that G/Z(G) ~ AGL, (p™). |

3.3. PROOF OF THEOREM 1.2.

Proof: Let a € B¥, |a| = k, and a@ = k- 1 + {x for some z € B#, ¢ € N where
l|z| = k* — k. Now (a@,z) = {|z| = k? — k. On the other hand, (a,az) = Ayzq k.
Thus

t
(17) az=(k—1)a+ ) oid; where d; € BY.

=1

Now since |Supp(z?)| < 2 and |z| > k, we can assume that % = |z - 1 + vy
where y € B¥#, v € N. Therefore

t
Za?|di| = (az,az) — (k — 1)*[q|
i=1

= (a@,zT) — (k — 1)%k = k|| + (|z] = 1)€|z)0zy — (k — 1)%k.

Since |z| = (k* — k)/¢, we have that either d,, # 0 or

¢
0< S ald] = kol — (k - 1)k = [? — (k= 1)]k(k - 1).
1=1
In the latter case, ! = 1 and S./_, o?|di| = (k — 1)k. But S aildi] =
(k —1)%k > (k — 1)k, a contradiction.
Therefore, z = y. Then {1, z} is a table subset and B, = L*(B,), so
Theorem 2.4 applies. |
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