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1. In t roduc t ion  

Isr. J. Math. 

Definition 1.1 ([ABEF], [B1], [B2]): A finite dimensional, associative and com- 

mutative complex algebra A with identity 1 is called a table algebra with 

respect to a distinguished basis B (and B is its table basis) if and only if the 

following hold: 

I) l e B .  

II) The structure constants of A with respect to the basis B are non-negative 

real numbers: 

ab = E A~bcc, for some A~bc E I~>o. 
cEB 

III) There is an algebra (anti)automorphism (denoted by - ) of A such that 

= a for all a C A and B = B (an element b E B is called real if b = b). 

IV) For all a, b E B, )%61 = 0 if a ~ b and Aa~l > 0. 

By [AB, Lemma 2.9], there is a unique algebra homomorphism I I: A --+ C 

such that Ibl = Ibl E ~+ for all b e B. The positive real numbers Ibl, b C B are 

called the degrees  of (A, B). In what follows we also denote B # = B \ {1}, 

S+ := ~s~sS  and [S[ = ~s~s  Is[. 
Table algebras are closely related to C-algebras introduced by Kawada [Kaw] 

and Hoheisel [H]. The axioms of C-algebra may be obtained from I-IV if 

we replace the condition Aabc E ll~>o by Aabc C I~ and require the mapping 

~beB xbb ~ ~beB xbAb~l to be an algebra homomorphism. 

Definition 1.2 ([B1]): An integral  table algebra (abbreviated ITA) is a table 

algebra (A, B) such that all the structure constants Aabc and all the degrees Ibl 

are rational integers. 

Any finite group G yields two examples of ITA's: (Z(CG), Cla(G)), the center 

of the group algebra, with table basis the set of sums C of G-conjugacy classes C, 

with automorphism - extended linearly from inversion in G, and with degrees 

IC[ = ICI for all C e Cla(G); and (Ch(G),Irr(G)), the ring of complex valued 

class functions on G, with table basis the set of irreducible characters of G, with 

automorphism - extended linearly from complex conjugation of characters, 
and with degrees IX[ = X(1) for all X E Irr(G). Another example is the Bose- 
Mesner algebra of a commutative association scheme, with table basis the set 

of adjacency matrices, [BI, Section II.2]. 
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Definition 1.3 ([BX1]): A table algebra (A,B) is called homogeneous  (of 

degree  A) iff IBI > 1 and, for some fixed positive real number )~, 

Ibl=A for a l l b c B # ;  

a homogeneous integral table algebra is denoted by HITA. 

Any table algebra may be rescaled (replacing each table basis element by 

a positive scalar multiple) to one which is homogeneous, and any ITA can be 

rescaled to a homogeneous ITA [BX1, Theorem 1]. 

Let (A,B) be a table algebra. For all x E A, SuppB(x ) = Supp(x) denotes 

the collection of all elements of B which appear with nonzero coefficient in the 

decomposition of x. A nonempty subset C C_ B is called a tab le  subse t  of  B 

(notation C _< B) iff Supp(ab) C C for all a, b C C. Any table subset is stable 

under - and contains 1A, [AB, Proposition 2.7]; [BI, Proposition 2.13]. For 

any c E B, the set Bc defined by 

Bc := Un _lS,,pp(c n ) _  

is easily seen to be a table subset of B, called the table  subse t  genera ted  

by c. 

An element c of B is called faithful iff Bc = B. Let G be any finite group. 

Then C c Cla(G) is faithful iff (C) = G, and X c Irr(G) is faithful iff Z is 

faithful in the usual character-theoretic sense. 

Definition 1.4 ([Bh], [BX2]): An element b e B is called s t anda rd  iff Ib[ - Ab~l. 
A table algebra (A, B) is s t anda rd  if every element of B is standard. 

In what follows we use abbreviations S(I)TA and H(I)TA for standard (inte- 

gral) and homogeneous (integral) table algebras, respectively. 

Definition 1.5 ([BX2]): Two table algebras (A,B) and (A',B') are called 

isomorphic  (denoted B "~ B') when there exists an algebra isomorphism 

r A --+ A' such that r  is a rescaling of B'; and the algebras are called 

exact ly  i somorphic  (denoted B ~x B') when r  = B'. So B ~_x B' means 

that B and B' yield the same structure constants. 

Definition 1.6: Let (A, B) be a table algebra. Then c E B is called linear iff 

Supp(c n) = {1} for some n > 0. This is equivalent to Supp(c~) = {1}, [AB, 

Proposition 4.2]. A table subset is called abel ian iff each of its elements is 

linear. The set of all linear elements of B, denoted by L(B), is a table subset 
[AB, Proposition 4.2]. 
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Detinition 1.7: Let (A,B), (C,D) be two table algebras. Then one can define 

their t ensor  p roduc t  (A | C, B | D) where the distinguished basis B | D is 

the set of tensors b | d, b E B, d E D. If both (A, B) and (C, D) are standard, 

then so is their tensor product. 

If (C, D) is standard then (AQcC, BQD)  contains a subalgebra (A, B)~(C, D) 

spanned, as a vector space, by the following basis: 

B ID := {1 | d E D} U {b| D+: b E B#}.  

A direct check shows that a subspace spanned by the above basis is a subalgebra 

of (A | C, B | D) that satisfies all the axioms. In what follows we shall denote 

it by (A 1 C, B ~ D) and call it a w r e a t h  p r o d u c t  of (C, D) by (A, B). The 

dimension of (A I C, B ~ D) is always equal to dim(A) + dim(C) - 1. 

Example 1.8: In [BX1], Blan and Xu defined three families of homogeneous 

table algebras of degree k, as follows: 

1. T0(k) := {1,b} with b 2 = k. 1 + ( k -  1)b. 

2. V(3, k ) :=  {1,b,c} with 

b 2 = k. 1 + ( k -  1)c, 

b c = ( k - 1 ) b + c ,  

c 2 = k. 1 + b +  ( k -  2)c. 

3. V(2, k, #) := {1, b} with b 2 = k#. 1 + (k - #)b where 0 < # _< k, #, k E N. 

In what follows we set V2 := V(2,3,2),  V3 := V(3,3). 

Definition 1.9 ([BX1]): Let (A,B) be a table algebra and b E B. The wid th  

of b is defined as ISupp(bb)l. The width of (A,B) is defined as a maximal value 

of ISupp(bb)l, b E B. 

Integral table algebras of width 1 were classified in [AB] and they are abelian, 

up to rescaling, the group algebras of abelian groups. The first step in the 

study of table algebras of width two was done by Blau and Xu. To formulate 

their result we need the following notation. Let (A, B) be a table algebra, H an 

abelian group and A a positive real parameter. We set 

(B | H) '  := {b| b e  B \ {1},h e H} U {1 | Ah: h E H \  {1}}U {1 | 1}. 

THEOREM 1.10 ([BX1, Theorem 3]): Let (A, B) be an integral table algebra 

which is homogeneous of degree k for some A > 2, and is such that B con- 

tains a standard, faithful dement of width 2. Then B is exactly isomorphic to 
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(To(A) | Zm)' or (V(3, A) | Zm)' for some m E Z +, 

Z~ := {1} U {Ah: h E Z,~\  {1}}. 

In [BX2], Blau and Xu proved the following statement. 

COROLLARY 1.11 ([BX2, Corollary 2.15]): Assume that (A,B) is a homoge- 

neous ITA of degree 3, and that B contains a faithful element b of width 2. 

Z ' Then B -~x (V2 | ,~) , (V3 | Zm)', or (To(3) | Z,~)', for some m >_ 1. So i f  

B is standard, then B ---x V3 or To(3). Ifb is real, then m <_ 2. 

In [R] Rahnamai Barghi classified ITAs which contain a real standard faithful 

element of width 2. In this paper we classify SITAs of width two generated by 

one element. 

If (A,B) is a SITA and a E B is an arbitrary element of width 2, then 

Supp(a~) = {1,b} for some b E B #. Two cases are possible: [b[ < [a[ and 

[b[ > [a[. These cases are covered by the following two Theorems. 

MAIN THEOREM 1.1: Let (A,B) be a SITA. Let a E B # be an element of 

width 2 and degree k >_ 2. I f  [Supp(a~)[ _< [a[ + 1, then one of the following 

holds: 

(I) k = 2 and B~ may be rescaled to a HITA of degree 2. (These algebras 

were classified by B1an in [B2].) 

(II) k _> 3 and one of the following holds: 

(a) B~ -~x Zm | To(k), 
(b) Ba ~x Zra | V(3, k), 
(c) a ~ = k . l + k . b f o r s o m e b E B  # , [ b [ = k - l a n d B - ~ x B ( Z . ~ , d )  

for some degree function d: Zm -+ N related to k (see Subsection 2.1 

for the exact definition of algebras of type B(Zm, d)). 

Remark: The conditions of the Theorem are always satisfied if an element of 
maximal degree is of width two. 

Finite groups related to SITA induced from conjugacy classes satisfying II of 

our Main Theorem are classified in Proposition 3.7. 

The next result resolves the case of ISupp(a~)l > lal + 1. 

MAIN THEOREM 1.2: Let (A,B) be a SITA of width two. If  there exist a E B # 

such that [a I = k >__ 3, and [Supp(ag)[ > [a[ + 1, then a-d = k .  1 + lx for some 

l E N, a n d x  E B with 1 [ k ( k - 1 ) , l  < k - l ,  and Ix[ = k ( k - 1 ) / 1 ;  and 

Ba --x B(Zm, d) for some degree function d: Zm --+ N re/ated to Ix[ + 1. 
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1.1. KNOWN FACTS AND SOME CONSEQUENCES. 

Definition 1.12 ([AF5, Section 2], [B1, Definition 1.17]): 

is defined as 

o(B) := E Ibl2/'~bbl" 
bEB 

The order  of (A, B) 

Note that in the case of either (Z(CG),Cla(G)) or (Ch(a) , I rr(a))  for any 

finite group G, the order of the table algebra equals IG I. If B is the set of adja- 

cency matrices of a commutative association scheme, then o(B) is the cardinality 

of the underlying set. For any B, o(B) clearly is invariant under rescaling. Since 
b E B is linear iff '~bgl = Ibl 2, we immediately have 

PROPOSITION 1.13: I f B  is abelian, then o(B) = Igl. 

Given a table subset C of a table algebra (A,B), one can define a 

quot ient  table algebra B / C  in the following way. By [B3], Corollary 3.13 

there exists a unique idempotent, denoted ec, which is a positive real scalar 

times ~ b e c  Ibl/~bglb" So, eA is a subalgebra of A. It follows from [B3], 
Theorems 1, 2 that the algebra Ae with a distinguished basis 

{e} U {eb: b �9 B \ C and Ib] _< ]b' I for all b' �9 Supp(eb)} 

is a table algebra. In what follows we denote by B / C  a standard rescaling 

of the basis defined above. By [B3], (Ae, B/C)  is a table algebra which is an 

epimorphic image of A. It is called the quotient algebra of (A, B) with quotient 

subset C. 

THEOREM 1.14 ([B3], Corollary 4.5): I fX is any table subset orB, then o(B) = 

o(X). o(B/X). 

Definition 1.15 ([BX1]): 
C, D. Then 

Let (A, B) be any table algebra with table subsets 

CD := U~,ecSupp(bibj) 
bjED 
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is a table subset of B, the smallest one which contains C and D. 

LEMMA 1.16 ([BX2]): Assume that (A,B) is a table algebra, and C , D  are 

table subsets o r B  with CD = B and C N D -= {1}. If  [Supp(cd)l = 1 for all 

c �9 C, d �9 D (which holds i f  either C or D is abelian), then B ~_ C | D. 

Definition 1.17 ([BX2]): Fix b �9 B. The s tabi l izer  of  b in C, denoted s tac b, 

is defined as 

stac b := {z �9 ClSupp(bx) = {b}}. 

It is clear that  s tac b is always a table subset. 

LEMMA 1.18 ([BX2]): Let (A,B) be a table algebra, L = L(B) and b �9 B.  

Then Supp(bb) n L = staL b. 

Definition 1.19 ([AFM2]): Let (A,B) be a table algebra. If x = ~beBXb b, 
Y = EbEB ybb, then the scalar product (x, y) defined by the formula (x,y) = 

~bCB XbybAb~I is a symmetric positive definite form on A. 

PROPOSITION 1.20 ([AFM2]): Let (A,B) be a standard table algebra. Then: 

(i) for all a, b, c e A, (ab, c) = (b,-hc) = (a, cb); 

(ii) for all a,b �9 B, [a[ ]b I = }-~xeB ;~abxlXl; 

(iii) i f B  is integral, then for all a, b �9 B,  Aabc[C] is divisible by the/east  common 

multiple or lal, Ibl. 

The next Lemma was proposed and 

LEMMA 1.21: I fBa  is a SITA and [a[ 

proven by the referee. 

= 2 then ]b I <_ 2 for all b E B~. 

Proof: Since (a2,a 2) = (a~,a~) >_ 6, a 2 has a linear constituent u. Suppose 

first that  (a~, a~) = 6. Then (a, ~u) = (a 2, u) _> 0 implies that  a = ~u. Assume 

by induction on m that  for all 2 < j _< m, all elements of Supp(a j) have degree 

at most 2. Let x E Supp(a'~). Then Ix[ <_ 2, and (-hx, a m- l )  = (x,a m) > O, so 

that  ~x has a constituent of degree at most 2. Hence, so does u~x = ax. Then 

[ax[ _< 4 implies that  all constituents of ax have degree at most 2. Since x is 

arbitrary in Supp(am), the same holds for all constituents of aa m = a m+l. The 

result follows in this case. Now suppose that  (a~, a~) > 6. Then a~ = 2(1 + v) 

for some linear element v. It follows that  s taa  = {1, v}, and that  Ba/{1,  v} is 

abelian. Hence for all c E Ba, c~ = ]c[. 1 + [c[(]c[- 1)v. Then (cv, c) = (c-~,v) = 

]c[([c[ - 1) implies that  the coefficient of c in cv is [c[ - 1. But Icy] = ]c[, so that  

Icl <_ 2. m 
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2. T h e  a lgeb ra  B(G,d)  an d  its c h a r a c t e r i z a t i o n s  

Isr. J. Math. 

2.1. THE ALGEBRA B(G,d) .  Let G be a finite abelian group written mul- 

tiplicatively with identity 1. Fix an arbitrary 2 < k E l~. A partial function 

d: G --+ ~ is called a d e g r e e  func t i on  r e l a t e d  to  k if it satisfies the following 

conditions: 

(D1) The domain of d is a subgroup of G denoted as G<k; 
(D2) 4(1) = 1; 

(D3) d(g) = d(g -1) E [1,k - 1) for each g E G <k. 

The function d is called in tegra l  if Im(d) C_ Z. 

We extend the domain of d to the whole group G by setting d(g) := k for 
g E G \ G <k. We also set 

d* (g) := k - d(g), ~(g) . -  

It is easy to see that g E G <k r ~(g) ~ 0. 

d(g)d*(g) 
(k - 1) " 

In the algebra C[G] @ C[G <k ] we define the basis B(G, d) as follows: 

B(G,d)  := {bg}gca U {bg}gca<k, 

where 

bg := (d (g )g ,V~(~g) ,  g e a 

I f~(g)  r  then 

(1) (g,0) = bg+b; .  
k ' 

and b~ : = ( d * ( g ) g , - v / ~ g ) ,  g e G <k. 

d*(g)bg -d(g)b~ 
(0 ,g )=  k ~  ' 

note that (g,0) = (bg + b*g)/k even if ~(g) = 0. 

Since bh + b* h = k(h, 0), 

(2) 
bg(bh + b~) = d(g)(bgh + b;~), 

b*g(bh + b'h) = d*(g)(bgh + bgh). 

We note that  bl is the identity of C[G] | C[G<k]. 

The algebra C[G] �9 C[G <k ] has a natural involutionary automorphism x ~ 

induced by the mapping g ~ g-1: 

(Alh, A2g) = (Alh -1, )~29-1). 

Denote t(g, h) . 
: =  V ~ (gh )  " 
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PROPOSITION 2.1: The algebra C[G] �9 C[G <k] is a C-algebra with respect to 
the distinguished basis B(G, d) = {bg}geG (J {b~}geG<k. Its structure constants 
are given by the following formulae: 

bgbh = )~g,hbgh + )~*g,hb*gh, 

b*gbh = (d(h) - )~g,h)bgh + (d(h) - )~*g,h)b*gh, 
(3) 

bgb* h = (d(g) - )~g,h)bgh + (d(g) - )~*g,h)b*gh, 

b*gb* h = (k + )~g,h -- d(h) - d(g))bgh + (k + A*g,h -- d(h) - d(g))b*gh, 

where 

d(g)d(h)+d*(gh)t(g,h) if  ~(h)~(g) ~ O, 
k 

"~g,h = d(h)d(g) otherwise; 
( 4 )  k , 

d(g)d(hl-d(gh)t(g,h) i f~(h)~(g)  • O, 
* k 

)~g,h -~- d(h)d(g) o t h e r w i s e .  
k 

Proof'. First we note that bl E B. 

It is sufficient to prove the first formula from (3), since the others follow from 

(2). 

bgbh = (d(g)g, ~ g ) ( d ( h ) h ,  v/-~-h)h) = (d(g)d(h)gh, ~/~(g)~(h)gh). 

If ~(g)~(h) = O, then it follows from (1) that 

d(g)d(h) 'b * 
bgbh = d(g)d(h)(gh, O) - ~ ~ gh + bgh) 

and we are done. 

If ~(g)~(h) ~ 0, then g, h E G <k which implies that  gh E G <k. Therefore 

~(gh) ~ 0 and it follows from (1) that 

bgbh = (d(g)d(h)gh, ~/~(g)~(h)gh) 

= d(g)d(h)bgh + b*g h d* (gh)bgh -d(gh)b*g h 

= d(g)d(h)bgh +k b*gh + t(g, h) d*(gh)bgh k- d(gh)b*gh 

d(g)d(h) + d*(gh)t(g, h)bgh + d(g)d(h) - d(gh)t(g, h) b*h'9 
k k 

as desired. 

If h = g - l ,  then t(g,g -1) = ~p(g) and 

d2(g) + (k - 1)~(g) 
bgbg-1 -~ k 

d (g) - 
bl + k b~. 
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Since ~(g)(k - 1) = d(g)d*(g), 

a n ( g )  - e(g)e'(g) 
bgbg-~ = c[2 (g) + d(g)d*k (g) bl + k k - 1  bl ., 

Now using the identity d(g) + d*(g) = k we obtain that 

bgbg-~ = d ( g ) b l +  
d2(g) - d(g) 

k - 1  
b~ = d ( g ) b l + ( d ( g )  - ~(g))b;. 

Analogously, 

b*gb*g-1 = d*(g)bl + 
(d*(g)) 2 (d*(g))2 d* 

(g)b~ =d*(g)b l+(d*(g)  - ~(g))b~. 
k - 1 

Thus )%fi~bl = d(g) a n d  )~b*gb;bl -~  d*(g). A routine check shows that the 
mapping bg ~-~ d(g), bg ~ d* (g) is an algebra homomorphism. | 

PROPOSITION 2.2: Let (C[G] GC[G<k], B(G, d)) be a C-algebra defined above. 
Then 

(1) (C[G] G C[G<k], B(G, d)) is a table algebra i f  and only i f  

, d ( h ) d ( g ) d * ( j )  > 1 
_ d * ( h ) d * ( g ) d ( j )  - -  ( k - l )  (04) Ag,h > max(0, d(g) + d(h) - k) , , % ,- 

A9 h < min(d(g), d(h)) d*(h)d*(g)d*(j) > 1 
' - -  d ( h ) d ( g ) d ( j )  - -  k-('kE~-l) 

holds for each triple g , h , j  e G with ghj  = 1; 
(2) i f  d is integral, then (C[G] • C[G <k ], B(G, d)) is a SITA if  and only i f  it 

satisfies (04) and the additional conditions: 
(D5) t(g, h) E Z for each pair g, h E G; 
(06) d(g)d(h)+d*(gh)t(g,h) E Z for each pair g, h E G. 

k 

Proof: (1) A C-algebra is a table algebra iff its structure constants are non- 
negative. Writing the corresponding inequalities for structure constants given 
by (3)-(4) we obtain 

d(g)d(h) 
d(gh) 

d(g)d*(h) 
d*(gh) 

Taking into account that 

>_ t(g,h); d*(g)d(h) >_ t(g,h); 
d*(gh) 

>_ t(g,h); d*(g)d*(h) >_ t(g,h).  
d(gh) 

/~ (g)~(h)  /d(g)d* (g)d(h)d* (h) 
t ( g , h )  = V - 
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we obtain that  being a table algebra is equivalent to the following inequalities: 

d(g)d(h)d* (gh) 1 d* (g)d(h)d(gh) 1 
d*(g)d*(h)d(gh) >-- k---L-l-1; d(g)d*(h)d*(gh) >- k~- l ; 

d(g)d*(h)d(gh) > 1 d*(g)d*(h)d*(gh) 1 
d*(g)d(h)d*(gh) - k---Z-l; d(g)d(h)d(gh) >-- k--L-l-1" 

Now the statement follows from the equality d(gh) = d((gh)-l) .  

(2) This part of the statement follows immediately if we impose the integrality 

conditions on the structure constants, i 

2.2. LINEAR EXTENSIONS OF TABLE SUBSETS. Let (A,B)  be a standard table 

algebra and let C be a table subset of B. A l inear  e x t e n s i o n  L c (B) of C is 

defined as a set of all b E B such that 5upp(bb) C_ C. An equivalent definition is 
that  L C ( B ) / C  = L ( B / C ) .  If C = {1, b}, then we abbreviate LD(B) := LC(B).  

In this section we study linear extensions of the smallest non-trivial table 

subset, namely a table subset of cardinality two. Assume that C = {1, b}, 

where b is not linear. If B is standard, then [b e > 1 and 

We set k := ]b[ + 1. 

LEMMA 2.3: Let (A,B)  

properties hold: 

b 2 = Obj. 1 + (]b i - 1)b. 

be a standard table algebra. Then the following 

(1) Lb(B) is a table subset o rB .  

(2) ix{l, b}l = k for each x E B and L~(B)/{1, b} is an abelian group. 

(3) ISupp(xy)l < 2 for all x , y  e Lb(B). 

Proof: Part  (1) follows directly from the definition of Lb(B). 

(2) Since xg C {1, b}, Ix{1,b}l = I{1, b}l by Proposition 4.8 [AFM2]. The 
second part of the claim follows from the definition of Lb(B). 

(3) Since Lb(B)/{1,  b} is an abelian group, the product of two {1, b}-cosets 

is just one {1, b}-coset. Therefore, it is sufficient to show that each {1, b}-coset 

contains at most two elements. 

Since Lb(B)/{1,  b} is an abelian group, xi.hj  C_ {1, b} for each xi, xj e x{1, b}. 

Therefore 
IxH Lxji b 

xi~j - k - 1 

and, consequently, 

= Ix l Ixjl + Ix i Iz i (Ix, i -  1)(ixji-  1) 
k - 1  
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On the other hand, 

So 

Thus 

and 

(x~j,  x~ j )  _ I l l l ,  x~?,x~, 2 
k - 1  

Ixd Ixyl + 
Ixd Ixjl(Ixd- 1)(Ixjl-  1 )  _ Ixd~lxyl ~ 

k - 1  k - 1  

(k - 1) + ( I x i l -  1) ( Ix j l -  1) = Ixd Ixjl 

( k -  1) - I x i l -  Ixjl + 1 = 0; 

therefore, Ixd+lx j l  = k for each pair i r j .  Now the equality I x l ] + . . . + l x , d  --- k 

yields our statement. | 

In what follows we'll work with a table subset Lb(B) only. For this reason we 

set H := Lb(B),A := Sp(H). 

The main result of this subsection follows. 

THEOREM 2.4: Let B be a table a/gebra basis, C = {1, b} a table subset with 
b nonlinear, H := Lb(B), and A := Sp(H). Then the standard rescaling of H is 

exactly isomorphic to B(G, d) for a suitable finite abe//an group G and degree 

function d: G --+ N re/ated to Ibl + 1. 

Without loss of generality we may assume that  H is standard (otherwise we 

can rescale it to standard) and Ibl refers to the degree of the rescaled element. 

Denote e+ := -~(1 + b),e_ := 1 - -~(1 + b). It is easy to check that  e+,e_ 

are two pairwise orthogonal idempotents the sum of which is 1. Therefore 

A = Ae+ | Ae_. In what follows we set x+ := ~ x e + , x _  := xe_ for each 

x �9 H. Thus H+ := H/{1,b} = {x+: x �9 H}. We note that  the algebra Ae+ 

with H+ as a distinguished basis is a SITA (in fact H+ is an abelian group). 

Define a function *: H --+ H U {0} by the following rule: 

x* := [Y' ifx{1,b} = {x,y}; 
( 0, otherwise. 

Since each {1, b}-coset consists of at most two elements, x* is well-defined for 

each x E H. For e a c h x  E H we set ~(x) := H ( k - H ) / ( k - 1 ) .  Since each 

{1, b}-coset contains at most two elements, the value of ~(x) depends only on 

the {1, b}-coset of x. 
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PROPOSITION 2.5: The following properties hold: 
Ix*l~-I~l~*. (i) x e _  = k , 

(ii) x_ = x_; 

(iii) 

(5) (x_)(~_)  = ~(x)e_;  

(iv) i f H  is integral, then ~(x) = ~(~) E Z; 

(v) i f  x, y , z  E H are such that Axyz ~ O, then xy = Az + A'z* and 

(6) 
x_y_  = (~ - ~ * ) z _ ;  

~(x)~(~)  = (~ - ~ * ) ~ ( z ) ;  

(vi) I f H  is integral and x E H is such that gcd([x[, Ix* D = 1, then xx* = ~(x)z  

where [z[ = k - 1. 

Proo~ (i) Since 

x5 = Ix[. 1 + [x[([x[-  1)b, 
Ibl 

hence xb = (Ixl - 1)x + Ixlx*, so that  

I x l x - I x l x *  I x * I x - I x l x *  
x e _  ~-- x 

k k 

(ii) follows immediately from the definition of x_ and x*. 

(iii) 

x _ x _  = ( x e _ ) ( ~ e _ ) = ( x ~ ) e _  = ( ]x] - I  + [xI~x-[ 1 X)b)e_. 

Since 1 + b = ke+ and e+e_ = 0, we can rewrite the latter equality as follows: 

x _ x _  = ( I x l .  1 + Ix l ( Ix l -  1)(ke+ - 1) )e_  
k - 1  \ / 

:(H 
(iv) The equality p(x) = ~(5) follows immediately from part (iii). The inclu- 

sion ~(x) E Z follows from the identity 

~ ( x )  = Ixl - Ax~b. 

(v) Since H/{1,  b} is abelian, Supp(xy) C_ z{1, b}. If z* = 0, then z{1, b} = 
{z}, and therefore xy = AxyzZ. If ISupp(z{1,b})] = 2, then z{1,b} = {z,z*} 
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and xy = Az + A'z* with A = Axyz,A* = Axyz.. In both cases we can write 

xy = Az + A'z*, where A* is an arbitrary integer if z* = 0. 

Multiplying the latter equality by e_ and taking into account that  e 2 _ = e_ 

and (z + z*)e_ = 0, we obtain 

( x e _ ) ( y e _ )  = = = 

Applying - -  to both sides we obtain 

= - 

Now multiplication of both equalities and (5) yields (6). 

(vi) If x is real, then xx* = x-x-; = ~(x)b and we are done. So, we may 

assume that  x is nonreal. It follows from part (iii) of Proposition 1.20 that  

tSupp(xx*)l = 1, i.e., xx* = Az for some z E H.  Therefore (xx*,xx*) = AixiIx* I. 

On the other hand, 

(xx*, xx*) = x ' J )  = ( x V ,  x F > .  

Since xx---; = ~(x)b, (x-~,x~-;) = ~(x)ix]ix*], and, consequently, A = ~(x), 

[z[ = k - 1. . 

In the statement below 7r(n) denotes the set of prime divisors of a nonzero 

integer n. The set of all primes is denoted as P. 

LEMMA 2.6: 

(i) A subset X is a table subset of H if  and only i f  either X _< L(B)  

or {1,b} C_ X and there exists a subgroup A <_ H + such that X = 

{ x E H I x + E A } ;  

(ii) i f H  is integral, then for each II C P the subset H n := {x [ 7r(~(x)) C_ l-i} 

is a table subset of H; 

(iii) H <k := {x t Ix[ < k} = {x l lx{1,b}[ = 2} _< H;  

(iv) i f H  is integral and x+y+ = z+ with ~(x) = ~(y), then ~(z) is a perfect 

square; 

(v) i f H  is integral, then ~(x) is a perfect square for each x+ E (H+) 2 (here 

A 2 is a subgroup of A generated by the squares). 

Proof: (i) Since X < H,  X+ _< H+.  If {1, b} < X, then X is a full preimage 

of X+ and we are done. If {1, b} ~ X, then X • {1, b} = {1} and, consequently, 

Supp(x~) c_ X M {1,5} = {1} for each x E X. Hence X _< L(B).  
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(ii) Let x, y E H be such that  7r(~(x)), Ir(~(y)) C II. Then ~(x) • 0, ~(y) # 0. 

Write xy = Az + A*z*. Now the claim follows from (6). 

(iii) follows from (6). 

(iv) is a direct consequence from (6). 

(v) is a direct consequence from (iv). | 

It follows from part (iii) that  H <k is a subgroup of H+.  A function p: H~_ k -+ 

H <k will be called a r e p r e s e n t a t i v e  func t i o n  if p(x)+ = x for each x E 

H <k, equivalently, p(x) e Supp(x), x e H~_ k. We always have that  Supp(x) = 

Supp(p(x){1,  b}) = {p(x),  p(x)* }. 

Denote 
1 H~ k p~(x) := ~ ( ~ p ( x ) _ ,  x e . 

PROPOSITION 2.7: For each x , , . . .  ,Xm E H_~ k, 

p ( x l ) ' " p ( x ~ )  = ~ p ( x , ' " X m )  + ~*p(x , ' "Xm)*,  

p(Xl) ' p ( x ~ ) e -  = (~ - ~ * ) p ( x , " "  x , , )~_ 

and 

i f f A -  ~* > 0 .  

p = ( x l ) . . . p = ( x m )  = pn (X~ ' ' 'X ,n )  

Proof." Since p(x) E Supp(x) for each x E H <k, we can write 

Supp(p(Xl) ' ' 'p(Xm)) C Supp(xl""Xm) = Supp(p(Xl""Xm){1,b}). 

Thus p ( x l ) . .  "p(Xm) = )~p(xl"" "Xm) +/~*p(Xl"" "Xra)* for suitable A,A* E 51. 

Multiplying both parts by e_ we obtain that  

p ( x l ) . . . p ( x ~ ) e _  = (~ - ~ * ) p ( x , . . . x m ) e _ .  

Induction on m and (6) imply that  

pn(Xl)''" pn(X,~) = +pn(X~''" X~) 

for each m E 51. On the other hand, 

~(p(Xl ...xm)) 
p ~ ( X l ) . . . p ~ ( x m )  = (~ - A*) ~ ( p ( x l ) ) . . . ~ ( p ( x m ) )  

Now the claim becomes evident. | 

pn(X, """ X~,). 



300 z. ARAD, Y. EREZ AND M. MUZYCHUK Isr. J. Math. 

PROPOSITION 2.8: There exis ts  a representat ive  funct ion p: H~_ k --+ H <k such 

that  pn(h+) = h_ for each h E L(H)  and 

pn(X)pn(Y) = pn(Xy) (7) 

for each x, y E H~_ k . 

Proof: It follows from Proposition 2.7 that  

p(x)p(~) = ~p(xy) + A* p(xy)* 

for some A, ,~* E N. It follows from Proposition 2.5 and (6) that  

p(x)_p(y)_ = (A - A*)p(xy)_ 

where 

- A* = + I~(x )~( ; )  

Then 

(8) 

where 5(x, y) E {~:1}. We have to show that  the function p may be built in such 

a way that  5 (x , y )  = 1 for each x , y  E H ~  k and pn(h+) = h for every h E L(H) .  

Since L(H)+  is a subgroup of H~_ k, there exists a decomposition H~ k = 

X1 • �9 " • Xr into the product  of cyclic subgroups such that  

L(H)+  = (L(H)+ NX1) • . . .  x (L(H)+ n X r ) .  

Let x~ and Yi be generators of X~ and L(H)  N Xi, respectively. Denote by n~ 

the order of x~ in the factor-group X J ( L ( H ) +  N Xi) .  It follows from (8) that  

pn(xD TM = -kpn(x n~) = •  where gi is a unique linear element of Supp(x n~). 
n l  It is clear that  x i = Yi = (g~)+. 

Define now 
p(x D if pn(xi)  n~ = + g i e - ,  

a (x i )  := p(x~)* if pn(xi)  ~' = - g i e - .  

If ni is even, then 

(p(xT'12)) 2 = Ag~ + ~* g,.* 
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Y_t 
Since gi is linear, )~ = [p(xi ~ )[ > ,k*. ~ 

Define p(h+)  = h for all h E L ( H ) .  

(pn(xn~/~))~ ,,, = p n ( x  i ) = g i e - .  

Now the equali ty 

implies tha t  

301 

Then  pn ( h+)  = h e _ ,  and hence 

pn(Xi)  n ' /2  = =]=pn(x n ' /2)  

p [ X  ~ni ~ n~, i) (Dn(xi )n i /2)  2 ("l-pn(xn~/2)) 2 e -  : ~i e - .  

Thus  if f ln(Xi)  TM = - - g i e - ,  then ni is odd. Therefore  a n ( x i )  = - -pn(Xi ) ,  and, 

consequently, an(Xi )  ni = g i e - .  

Thus an(Xi )  n~ = g ie_  for each i = 1 , . . . , r .  Denote  Ni := o(x i ) .  Clearly 

N i  = n io(g i ) .  It follows from Proposi t ion  2.7 tha t  for each n E [0, Ni - 1] we 

have a ( x i )  n = )~h + ) r  for suitable h E H.  Set 

J" h if A* _< A, (9) r n)  
t h* otherwise.  

By Proposi t ion  2.7, a ~ ( x  n) := (an(Xi ) )  n for each n E [0, Ni - 1]. Since x N~ = 1 

and ( an (x i ) )  N~ = (g i )~  = e_,  the equali ty an(X  n) := ( a n ( x i ) )  n holds for 

each integer n. 

If h E L ( H )  is such tha t  h+ E L ( H ) +  N Xi, then h = gm for some m and 

m a n ( h + )  =- an( (g i  )+) = r m)  

(7 (X nlm'~ = n~ ~ j = a n ( x i )  n~m = (g ie_)  m = h e _ .  

Therefore  a(  h+ ) = h. 

If (Xl)  m~ . . . . .  ( xr )  m~ E H ~  k is an abr i t r a ry  element,  then  

a ( x ~ n l ) . . . .  �9 a ( x r  m ' )  = An + s 

for a suitable h E H~_ k. As before, we set 

j" h if ,~* _< A, (10) dr(X~nl . . .  xv  m '  ) 
I h* otherwise. 

:~ Here we used the fact that if u E B is linear and Aw~ ~ 0, then Iv I -- ]w] = ,kvw~. 
We didn't find the proof of this claim in the literature, so we reproduce here the 
proof proposed by the referee. 

By Proposition 1.20, ,kw~iuI = , k ~ i v  I *=* , k ~  = ~ I v I  . By lAB, 
Proposition 3.2] ISupp(u~)] = 1. Therefore u ~  = A~vv.  It follows from 
~olvl I ~ l  I~l (w~,u~) ( u ~ , ~ )  2 . . . . .  Auw,,I vl that A ~  = 1. There- 
fore A , ~  = Ivl. 
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Thus 

a n ( X ~ l  ) . . . . . O ' n ( x r  m')  : O ' n ( X ~ l  . . . x r m "  ) .  

Now we can write 

(7 n(xlpl . . .X r  p'~)O" n(x ql . . . x  qr) : O" n ( x l p l ) . . . .  .(7 n(x p'')O" n(x q l ) . . . . . ( 7  n(x q~') 

=  n(xl)p: . . . .  �9 . . .  

~-  ( 7 n ( X l ) P l + q '  . . . . .  O ' n ( X r )  p ' + q "  

- -  6 r n ( X P l + q l )  . . , T  ( ~ , P ~ + q , ' ~  
- -  �9 �9 �9 ~ n \ ~ , r  ] 

Consider an arbitrary element h �9 L(H).  Then h = y~: �9 . . . .  y~" for some 

p/s .  Then 

an(h+) = an((g:)~_:"..." (g~)~:) = O'n((gl)~_:)"..." (~n((gr)~') 
= (g l )P:e_ . . . .  �9 (g~)P"e_ = y ~ ' . . . . ,  y~"e_ = he_. 

Therefore a( h+ ) = h. | 

PROPOSITION 2.9: Let p: H~_ k --+ H <k be a representative function which 

satisfies (7). Then H ___~ B(H+,d) ,  where d is a degree function related to k 

defined as follows: 
for all h E H <k, 

f Ip(h+)[ i f h  = p(h+), (II) d(h) 
k - I p ( h + ) l  i f h  = p(h+)*. 

Proof." First we check that  d satisfies the conditions (D1)-(D3). 

If x C H~_ k, then Ip(x)l < k follows from the definition of H <k. If Ip(x)l = 

k - 1, then Ip(x)*l = 1 and, by Proposition 2.8, p(p(x)*+) = p(x)*, con- 

trary to p(p(x)*+) = p(p(x)+) = p(x). Therefore Ip(x)l �9 [1,k - 1). Since 

Ip(1)l �9 {1, k - 1}, Ip(1)l = 1 implies that  p(1) = 1. By Proposition 2.8, 

pn(x)pn(x -1) = pn(1) = e_. Therefore p(x -1) �9 {~(x),~(x)*}. If p(x -1) = 

~(x)*, then pn(X)pn(X -1) = - e _ ,  which is impossible. Thus p(x -1) = -fi(x) 

and, therefore, Ip(x)l = Ip(x-1)l. Thus (D1)-(D3) are satisfied. 

Define a linear mapping 

f :  C[H+] | C[H <k ] -4 A 

via its action on the basis {(h, 0)}hell+ U {(0, h)}heH~k: 

f((h,O)) = h, f((O, h)) = pn(h). 
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Since A+ = Ae+ is a table algebra with a distinguished basis H+,  f is an 

isomorphism between (C[H+], 0) and A+. 

Since pn satisfies (7), pn is a group homomorphism from H~_ k into A_. Its 

kernel is trivial, since the elements pn(h) ,  h 6_ H ~  k are linearly independent. 

Thus {pn(h)}heH<k is a group isomorphic to H~_ k. Thus f is an isomorphism 

between (0, C[H~k]) and A_. Combined altogether we obtain that  f is an 

algebra isomorphism between C[H+] | C[H~_ k] and A. To finish the proof we 

need to check that it maps the distinguished basis of C[H+] | C[H~ k] onto H. 

If ~(h) = 0, then 

f (bh)  = f ( d ( h ) h ,  O) = d(h)h  = kh  6_ H.  

If ~(h) # O, then 

f (bh)  = f ( d ( h ) h ,  x / ~ h )  = d(h)h  + X / ~ p n ( h )  = d(h)h  + p (h)_ .  

Since h = p(h)+ and d(h) = Ip(h)l, 

f(bh) = Ip(h)lp(h)+ + p(h)_ = p(h). 

Analogously, 

f(b*h) = f ( d * ( h ) h , - x / ~ h )  = d*(h)h - X / ~ P n ( h )  

= d*(h)h  - p (h )_  = Ip(h)*lp(h)+ - p (h)_  = p(h)*. | 

As a corollary we obtain the following statement: 

PROPOSITION 2.10: Let  a E B be an e lement  o f  width 2 such that  a-d = k . l  +kb, 

lal = k, Ibl = k - 1. Then  Ba ~-x B(Zm, d) for some m E N and degree function 

d: Zm-+  ~. 

Proof'. (a, ab) = (a~,b) = k (k  - 1) implies that ab = (k - 1)a, and hence 

b E staa.  Thus, s taa  = {1, b}, so this is table subset. Now Theorem 2.4 

applies. 1 

3. Enumeration of degree functions related to a given k 

In general it is difficult to describe all degree functions related to k E N. The 

first natural question which naturally arises is: what can be said about  the 

cardinality of Ira(d)? The following statement is easy to check. 
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PROPOSITION 3.1: Let G be an abelian group and d be a degree function such 
that Im(d) = {1}. Then d satisfies the conditions (D1)-(D6). 

Since d(g) is an idempotent in Zk-1 we get the following 

PROPOSITION 3.2: [Im(d)[ _< 2 br(k-x)[. 

Let x �9 H+ be an arbitrary element. Set 

a := d(x), b := d(x2), a* := d*(x), b* := d*(x2), A := Az,x, A* := A~, x. 

Then 

(12) a 2=Ab+A*b*;  aa*=ab+a*b* ,  

where a := a -  A,a* := a -  A*. Since A > A*, a < a*. 

Then the conditions (D1)-(D6) imply the following equations, which will be 

referred to as E-equa t ions :  

(a) a+a* = b + b * =  k, 
(b) a > A, 
(c) max(0, 2a - k) ~ A*, 

(13) (d) ~(a) := a a * / ( k -  1) �9 N, 
(e) ~(b) := bb*/(k - 1) �9 N, 
(f) t : =   (a)l �9 N, 
(g) = (a 2 + b*t) /k  �9 •, 
(h) gcd(a,a*) ~ 1. 

A solution with a = 1 or b = 1 is called trivial. By 

nontriviality of a solution implies that  gcd(a, a*) 

of (13). 

part (vi) of Proposition 2.5 

1, which explains part (h) 

If a = b is a solution of E-equations, then we have the following 

THEOREM 3.3: Let F <_ H < G be abelian groups. Let a = b E N be a 

non-trivial solution of (13). Then the function d: H --+ N defined by 

d ( h ) = { a ,  i f h e H \ F  
1, i f h  E F 

/s a degree function related to k which satisfies the conditions (D1)-(D6). 

Proof." The conditions (D1)-(D3) follow immediately. 

To check (D4) pick an arbitrary triple i, j ,  k C G which satisfies i jk  = 1. Then 

(d(i), d(j), d(k)) is one of the following triples: (1, 1, 1), (a, a, 1), (a, a, a). In the 

first two cases (D4) is evident. In the remaining case (D4) follows from (13)(b). 
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(D5) Computing t(g, h) we obtain 

1, g, h E F; 
1, g E F ,  h E H \ F ;  

t(g, h) = ~(k-a) g, h E U \ F, gh E F; 
k - 1  

~ ,  g, h E H \ F ,  g h E H \ F .  

It follows from (13)(f),(d) that t(g,h) E N for each g,h E H. Thus (D5) is 

satisfied. 
(D6) The number d(g)d(h)+g:(gh)t(g,h) is 1 if one of g, h does not belong to F. 

If g, h E F, then d(g)d(h)Wd*(gh~t(g,h) E N by Part (g) of (13). I k 

Not every solution of E-equations has a property a = b. The statement below 

yields an infinite series of solutions with a ~ b. 

THEOREM 3.4: Let 1 <_ H1 <_ H2 <_ H3 < G be abelian groups. For each 

m E N set 

q : = 4 m  2 - 2 ,  s : = ( q 2 - 1 ) m ,  k : = 4 s  2=(q2 -1 )24m2 ,  

a : = ( q 2 - 1 ) ( q : + q - 1 ) ,  b : = s ( 2 s + 5 ) ,  

where ~ is - 1 if s is odd and 1 otherwise. Then d: G ~ N defined below is a 

degree function related to k. 

1, g E H1, 
d(g) := a, g E H2 \ H1, 

b, g E H3 \ H2. 

Proof'. The conditions (D1)-(D3) are evident. The conditions (D4)-(D6) are 

equivalent to the fact that Ax,y, A*~,v,x,y E G are non-negative integers which 
satisfy 

(14) Az,y <_ d(x), d(y); A~,y _> 0, d(x) + d(y) - k. 

Direct calculations show that Az,y, A*,y have the values given in Table 1 (recall 

that A*x,y = Ax,y - t(x,y)). 
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T a b l e  1 

d(x)  d(y) d (xy )  

1 1 1 

a a 1 

b b 1 

a 1 a 

b 1 b 
a a a 

b b b 

b a b 

b b a 

t (x ,  y) /kx,y 

1 1 
q2 _ 1 a 

s b 

1 1 

1 
q2 _ 1 

s 

q2 _ 1 

(q2 _ 1)m 2 

1 
q3 -k- q2 _ 2q 

s 2 + 5 s +  s+l-~ 

(q - 1)(q + 1)2(2m2"+ 1) - m 
s 2 + s5 + q ( q -  1)m 2 

Now one can check tha t  ~x,y, A*,y satisfy (14). | 

In the next subsection we will find all solutions of (13) with a = b. 

3 .1 .  SOLUTIONS OF THE E-EQUATIONS. Set 

l := gcd(a, k - 1), l* := gcd(a*, k - 1), 

Clearly, a = ml ,a*  = m ' l * .  

PROPOSITION 3.5: The  fol lowing proper t ies  hold: 

(1) gcd(m,/*)  = gcd(m*,/)  = gcd(/*,/) = 1; 

(2) If* = k - 1 and, therefore,  m l  + m ' l *  = U* + 1; 

(3) d := gcd(m, k) = gcd(m*, k) = gcd(m, m*). 

a a* 
m : =  ~-, m* := l* 

Proof: (1) 

k = m l  + m * l * ~ m l  =_ l (mod  l*) ~ gcd(m, l*) = 1, gcd(/, l*) = 1. 

k = m l  + m * l * ~ m * l *  = l ( m o d / )  ~ gcd(m*,/)  = 1, gcd(/, /*) = 1. 

(2) Since l and l* are coprime divisors of k - 1, l* I (k - 1) / l .  Since a 2 - a is 

divisible by k - 1 (see (d) of (13)), m l ( m l  - 1) - 0(rood k - 1 ) ~ m ( m l  - 1) = 

0(rood k-1 ) Now the equality gcd(a, k - 1) = l implies tha t  gcd(m, k~__A) = 1. l " 
Therefore 

k - 1  k - 1  0 ( m o d  - - / - - )  (ml  - 1 )  - O ( m o d - - ~ ) ~ a  * = 
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(3) It follows from (1) that  gcd(a,a*) = gcd(m,m*). 

It follows from l I (k - 1) that  gcd(a, k) = gcd(m/, k) = gcd(m, k). Anal- 

ogously, gcd(a*, k) = ged(m*/*, k) = gcd(m*, k). Now the claim follows from 

gcd(a, k) = gcd(a*, k) = gcd(a, a*). | 

It follows from part (f) of the E-equations that  (a - a*) 2 = t 2 = ~(a). 

Therefore 
aa* 

( A -  A*) 2 = (a  - c~*) 2 = ~ (a )  - k ~  - ram*.  

Thus mrn* is a perfect square. Since m / d  and m * / d  are coprime, m / d  = 

u 2 , m * / d  = (u*) ~ for some coprime numbers u , u * .  Thus we obtain that  

k l , u ,  2 + l u  2 
d 

and all the numbers l, l*, u,  u*, k / d  are pairwise coprime. 

It follows from aa* = e t a + a ' a *  (see (12)) that  a * / d  divides a and a / d  divides 

a*. Write a = # ( a * / d )  = # l * ( u * ) 2 , a  * = # * ( a / d )  = #* lu  2. By the E-equations 

a - a* -= - t  ::V # l* (u*)  2 - #* lu  2 -- - d u u *  

and 

# + # *  = d .  

p(u*)  2 - p * u  2 = duu*.  Thus p : uu,#* : ~,*u* and, therefore, 

{ uU 4- u'U* = d; 
ul*u* - u*lu  = - d .  

Finally we obtain that  

~U --  '~* 

u = d l u  2 + / , ( u , ) 2 . ;  

which implies that  

Set 

l* ~*  "~ ~t 

dlu2  + l*(u*) 2 

lu  2 + l*(u*) 2 l ' u*  + u lu  - u* 

d /2" v 

lu 2 + l*(u*) 2 
W o - -  

d 

(w may be not an integer). This gives us the following: 

V W  -1- ~t* l ]*W --  ?.t 
l - m  , l * -  

~t U* 
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Taking into account that ll* + 1 = k = d(u21 + (u*)2/*) = d2w we obtain 

W 
d 2 u u  * --  /1"~* + /..'~ 

/tgt* 

where d = uu + u 'u*.  Therefore 

d2u * + u d2u - u* 
l =  - - ;  l*  - 

v* /2 

THEOREM 3.6: f lU,  U*, V, V* E N are such that  gcd(u, u*) = 1 and 

(15) { u2u2u * - -u (modu*) ,  
(u* )2u(u*)  2 _ u * ( m o d . ) ,  

then the following numbers  yield a solution o f  the E-equations: 

a = b = d u 2 1 ,  a * = b * = d ( u * ) 2 1  *, a = u l * u ( u * )  2, a * = u * l u * u  2, 

where d = uu + u 'u*  and 1 = d2u*+'" l* -- d2u-v* 
12" ' V 

Proo~ First we note that l, l* E N by (15). 

Further 

k = a + a* = d(u21 + (u*)2/*) 

d(u2a   * + : = + 
\ l]* V / 

= d d2u2u*u + (uu) 2 + d2u(u*)2u * - (u 'u*)  2 

VV* 

= dd2Uu*(uu + u 'u* )  + (u 'u* + u u ) ( - u * u *  + uu) 
/IV* 

= dd3Uu * + d(u*u* - uu) = ll* + 1. 
lJV* 

(b) is equivalent to a _> 0, which holds trivially. 

(c) is equivalent to a* _< min(a,a*). The inequality a* <_ a is evident. So we 

need to check only that a* _< a*. Now we can write 

a* <_a* ~ u*lu*u 2 <_d(u*)2l * ~ (d2u * + u ) u  2_<du * d 2 u - u *  
t] 

(d2uu * + uu)uu  <_ d3uu * - du*u* ~ (uu) 2 + du*u* <_ d2uu*u*u *. 

Now the claim follows from 

(uu) 2 + du* u * = (uu) 2 + (uu + u* u *)u* u * <_ (uu + u'u*) 2 = d 2 <_ d2uu* u* u *. 
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(d)+(e)+(f) We have 

~(a )  = ~(b) = (duu*)  2 ~ t = duu*.  

Since 

(g) It is enough to show that  a - A E Z, 

a 2 + a*t a * ( a -  t) 
a - A = a  - -  -- 

k k 
d(u* )21* ( du21 - duu* ) 

k 

u(u*)21*(u l  - u*) 

k/d  2 

(h) Since v, v*, u, u* are natural numbers, d >_ 2, which implies that  gcd(a, a*) 

> 2 .  

It is not difficult to describe all solutions of (15). Set n := gcd(v, v*), v = 

aS,  v* = nO*. Then gcd(0,0*) = 1 and (15) are equivalent to the following 

congruences: 

(16) { nOu2u* -~ - l (modS*) ;  
nO*u(u*) 2 =_ l (mod0).  

Thus we have a quadruple of pairwise coprime numbers u,u*,0,0*. By the 

Chinese remainder theorem the congruences (16) always have an infinite series 

of solutions for each quadruple u, u*, 8, 0* of pairwise coprime natural numbers. 

Some infinite series of solutions of (15) may be easily pointed out: 

8 = 1,8" = 1 and n , u , u *  E N are arbitrary numbers with gcd(u,u*) = 1; 

u = u *  = l , n = l , O *  = O + l , O E N .  

Table 2 contains the list of solutions to the E-equations for a = b, a* = b* as 

solved by Shlomo Arad's computer program for values of 1 < k < 2000. One 

can see that  for each k < 2000 there exist at most one solution. Some of the 

solutions found belong to the infinite series defined above. 

we obtain a - A = vu(u*)21 * E Z .  

d2uu  * 4- u v  - u ' v *  d2uu  * + u v  - u ' v *  
u l - u * =  and k / d  2 =  

12" l]l]* 
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Table 2 

u U* 6 6* n ~ ~*  a a* k 
l 1 1 1 1 3 5 10 6 16 
1 1 1 2 1 7 10 15 21 36 
1 1 2 1 1 8 I I  33 12 45 
1 1 1 1 2 14 18 36 28 64 
I 1 3 I 1 15 19 76 20 96 
1 1 2 3 1 22 27 45 55 100 
1 1 l 1 3 33 39 78 66 144 
1 2 1 1 1 32 38 57 96 153 
2 1 1 1 1 34 40 120 51 171 
1 1 4 1 1 24 29 145 30 175 
1 1 3 4 1 45 52 91 105 196 
1 1 1 1 4 60 68 136 120 256 
1 1 5 1 1 35 41 246 42 288 
1 ! 1 3 2 58 66 88 232 320 
1 1 4 5 1 76 85 153 171 324 
1 1 1 2 3 75 84 126 225 351 
1 1 2 I 3 78 87 261 117 378 
1 1 1 1 5 95 105 210 190 400 
1 2 1 1 1 96 106 265 160 425 
l 1 6 1 1 48 55 385 56 441 
1 1 5 6 1 115 126 231 253 484 
1 1 1 1 6 138 150 300 276 576 
1 2 1 1 2 136 148 222 408 630 
1 1 7 1 1 63 71 568 72 640 
2 1 l 1 2 140 152 456 210 666 
1 1 6 7 1 162 175 325 351 676 
1 3 1 1 3 135 147 540 196 736 
1 1 1 1 7 189 203 406 378 784 
3 l 1 1 1 141 153 612 188 800 
1 1 8 1 1 80 89 801 90 891 
1 1 7 8 1 217 232 435 465 900 
1 3 2 1 1 216 231 385 540 925 
2 1 1 5 I 186 200 280 651 931 
3 1 1 2 1 219 234 585 365 950 
1 1 1 2 5 215 230 345 645 990 
1 1 1 1 8 248 264 528 496 1024 
1 1 2 1 5 220 235 705 330 1035 
1 1 8 9 1 280 297 561 595 1156 
1 1 9 1 1 99 109 1090 110 1200 
1 l 1 1 9 315 333 666 630 1296 
1 1 1 4 3 213 228 285 1065 1350 
1 1 3 1 4 252 268 1072 336 1408 
1 2 1 1 3 312 330 495 936 1431 
1 1 9 10 1 351 370 703 741 1444 
2 i 1 1 3 318 336 1 0 0 8  477 1485 
1 2 1 3 1 184 198 231 1288 1519 
l 1 10 1 1 120 131 1441 132 1573 
1 1 1 1 10 390 410 820 780 1600 
2 1 1 3 2 388 408 680 970 1650 
1 1 10 11 1 430 451 861 903 1764 
1 3 4 1 1 432 453 1057 756 1813 
1 1 1 1 11 473 495 990 946 1936 
1 1 1 2 7 427 448 672 1281 1953 
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PROOF OF THE MAIN THEOREMS. 

3.2. PROOF OF THEOREM 1.1. Recall that  a E B # is an element of width 2 

and [hi = k. 

(I) If k = 2, then B contains elements of degrees 1, 2 and B can be rescaled 

to a HITA of degree 2, and by Lemma 1.21 Case I holds. 

(II) I f k  > 3, let a~ = k - l + A b ,  b E B#;  then Aib I = k 2 - k ,  (a~ ,b)  = AIb ] = 

k ( k  - 1), {a, ab I = A~ba " k.  So ab = (k  - 1)a + ~ x r  A~bxx. Since ]b[ _< k, we 

have ~xr x] ~ k. O n  the other hand, k [ Aabxix[. 

Now for all x E Supp(ab) \ {a}, we have one of the following cases: 

CASE 1: ~abxiXI = k ,  Ibl = k ,  A = k - 1. 

CASE2: Aabzixi = O, ibi = k - l ,  A = k.  

CASE 1: L e t b  2 = k . l + f l b + u a n d a b = ( k - 1 ) a + a x w h e r e f l E N U { O } ,  

a �9 N, u �9 A. Thus s ix ] = lal ]b]- (k - 1)]a] = k. Now (a-d,b ~) = k 2 +/~AI b] = 

k 2 + ~ k ( k  - 1) and (ab, ab} = (k  - 1)2]a] + a2ixI = (k  - 1)2k + ak. Therefore 

k + f l ( k - 1 ) = ( k - 1 )  2 + a .  Then l _< a _< k implies that  k - 2 _ < / ~ _ < k - 1 ,  

hence/~ �9 N. 

SUBCASE (a): / 3 = k - 1 .  Thus a = k and we have that  b 2 = k . l + ( k - 1 ) b .  

Thus xb = a and x �9 B is linear. Since B x  �9 Bb = Ba  and Bx M Bb = {1}, we 

have (Lemma 1.16) that  B a  ~ z  ( Z m  | To(k))' for some m �9 N, where 

To(k )  = {1,b}, b 2 = k.  1 + ( k -  1)b, 

and case II(a) holds. 

SUBCASE (b): ~ = k - 2 ,  c ~ = l ,  i x i = k ,  a n d w e h a v e b 2 = k . l + ( k - 2 ) b + u ,  

u �9 A, ]u] = k, ab = ( k -  1)a + x. 

]u I = Ib] and ]b] ] ?]c] for any c �9 B that  appears in u with coefficient ~. Then 

u = ~ / c f o r s o m e c E B  # , ? � 9  Now 

(a~)b = kb + ( k -  1)b 2 = kb + ( k -  1)[k + ( k -  2)b + u], (ab)~ = ( k -  1)a~+ ~x, 

but /~xc _< lal = k by [AFM2, Proposition 2.3]. Thus ~x = b + (k - 1)u and 

u � 9  #. 

(-dx)b = x(a--b) = x ( ( k  - 1)~ + 7) = (k - 1)b + (k - 1)2u + x~, 

(-dx)b = (b + (k  - 1)u)b = b 2 + (k  - 1)bu = k .  1 + (k  - 2)b + u + (k  - 1)bu. 

Therefore bu = b +  ( k -  1)u, u 2 = ug = k.  1 + ( k -  1)b, au = ( k -  1)x + ~z for 

some 6 E N and z E B # where 61z ] = k .  



312 z. ARAD, Y. EREZ AND M. MUZYCHUK Isr. J. Math. 

Now (u~, a~) = (au, au) holds. 

(u~, a~) = k 2 + (k - 1)2k, (au, au) = (k - 1)2k + 52[z[. 

Thus  k 2 = (f2[z[ = 5k; then  5 = k and [z[ = 1, so z~ = a. Thus  Bz �9 Bu = Ba, 

B z N B ~  = {1}, therefore Ba ~- Zm|  k) for some m E N, V(3, k) = {1, b,u}, 

b 2 = k .  1 + ( k -  2 ) b +  u, 

u 2 = k .  1 + ( k -  1)b, 

bu = b+ (k - 1)u, 

and case II(b) holds. 

CASE 2: [b[ = k - l ,  ba = ( k - 1 ) a .  Thus  a5 = k. l+kb. Now (ba)'5 = ( k - 1 ) a ~  = 

(k - 1)[k.  1 + k .  b], b(a-5) = kb + kb 2, and we have b 2 = (k - 1) .  1 + (k - 2)b. 

Now Proposi t ion  2.10 finishes the proof. | 

PROPOSITION 3.7: Let G be a non-cyclic finite group which contains a conju- 

gacy  class C such that 

(1) (C) = G; 

(2) CC -1 = {1} U D, D E Cla(G) and [W[ _< [C[. 

Then G '2_ Z~ : (c) where the action of c on Z~ is defined by a Singer matrix. 

In particular, G / Z ( G )  "" AGL1 (pn). 

Proof'. The  table  algebra of conjugacy classes of G satisfies the conditions 

of Main Theorem 1.1 with ICI = k _> 3. (If ICI = 2, then for any g E C, 

IG : Cc(g)l = 2 implies tha t  C C_ CG(g) < G. This contradicts  (C) = G.) 

Let  N = (D).  If II(a) or (b) of Main Theorem 1.1 holds, then IDI = ICI, G = 

Z ( G ) N ,  and INI = k + 1 (if Bb ~x T0(k) )  or INI = 2k + 1 (if BD "% V(3,  k)). 

For any h E D, IG : CG(h)l = k. Thus  IG : NCG(h)l  = k / I N  : N N C c ( h ) I ,  

where the denominator  and numera to r  are relatively prime. Hence N < CG(h), 

so tha t  N is abelian. Then  G is abelian, which contradicts  ICI > 1. So II(c) 

holds, IDI = I C I - 1 ,  and N = 1 U D .  Since G is t ransi t ive on N #,  N is 

e lementary  abelian of order  pn for some p and exponent  n. 

In this case C = cN for each c E C. Now (1) implies tha t  G = (c, N) = N.(c) .  

Since D is a conjugacy class of G and N <_ Cc(D) ,  D = d (c) for each d E D. 

Thus  (c) acts t ransi t ively on the set D of cardinal i ty  pn _ 1. Hence the kernel of 

this act ion is a subgroup of (c) of index pn _ 1, or, equivalently, (c p~ -1) < Z(G).  

On the other  hand,  if z E Z(G)  is an a rb i t ra ry  element,  then  z = c ~ .n for some 

i e Z a n d n  e N. Since [Z(G),N] = 1, [ci,N] = 1 ~ p n - l l i  ~ Z = (cph -1 )J .n .  



Vol. 142, 2004 INTEGRAL TABLE ALGEBRAS 313 

But c pn-1 E Z(G), hence n E Z(G). Now NnZ(G) = 1 implies that  z E (c;'~-1). 

Thus Z(G) = (cP'~-l). Since Y n (c) <_ Z(G), Y N (c) = {1}. 

Take an arbitrary a E C. Let A be the matrix corresponding to the action 

of a on N _~ Z~. Since (a) acts on N \ {1} transitively, (A) acts on Z~ \ {0} 

transitively =V (A) is a Singer subgroup of GLn(p). The isomorphism G _~ 

Z~:  (c) follows from G = N .  (c) and g N (c) = {1}. It follows from G/Z(G)  ~_ 

Z ; :  (A) that  G/Z(G)  ~_ AGL1 (pn). | 

3.3. PROOF OF THEOREM 1.2. 

Proo~ L e t a E B  # , [ a [ = k , a n d a ~ = k . l + e x f o r s o m e x E B  # , g E N w h e r e  

g[x[ = k 2 - k. Now (a~, x) = e[x[ = k 2 - k. On the other hand, (a, ax) = Aa~.  k. 

Thus 

t 

(17) ax = (k - 1)a + E aidi where di E B #. 
i----1 

Now since ISupp(x2)[ _< 2 and Ixl > k, we can assume that  x 2 = Ixl.  1 + ~ y  

where y E B #, 7 E 5t. Therefore 

E a~idi] = (ax, ax) - ( k -  1)2H 
i----1 

= (a-5, x~) - (k - 1)2k = k H + ( H -  1)~]xi(f~y - ( k -  1)2k. 

Since [x[ = (k 2 - k)/~, we have that  either (~xy ~ 0 or 

t 

0 < Ea~[d i [  = k[x[ -  ( k -  1)2k = [k _ ( k -  1 ) ] k ( k -  1). 
/=1 

In the latter case, 1 = 1 a n d  E ~ : I  ~ = ( k  - t ) k .  But Eti : l  ai[di[ = 

(k - 1)2k > (k - 1)k, a contradiction. 

Therefore, x = y. Then {1, x} is a table subset and Ba = LX(Ba), so 

Theorem 2.4 applies. | 

lAB] 
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